-
2
-
-
0035750549
-
-
b) S. T. Pullarkat, J. Stoehlmacher, V. Ghaderi, Y.-P. Xiong, S. A. Ingles, A. Sherrod, R. Warren, D. Tsao-Wei, S. Groshen, H.-J. Lenz, Pharmacogenomics J. 2001, 1, 65.
-
(2001)
Pharmacogenomics J
, vol.1
, pp. 65
-
-
Pullarkat, S.T.1
Stoehlmacher, J.2
Ghaderi, V.3
Xiong, Y.-P.4
Ingles, S.A.5
Sherrod, A.6
Warren, R.7
Tsao-Wei, D.8
Groshen, S.9
Lenz, H.-J.10
-
3
-
-
0000974568
-
-
F. Sancenón, A. B. Descalzo, R. Martínez- Maóeź, M. A. Miranda, J. Soto, Angew. Chem. 2001, 113, 2710;
-
(2001)
Angew. Chem
, vol.113
, pp. 2710
-
-
Sancenón, F.1
Descalzo, A.B.2
Martínez- Maóeź, R.3
Miranda, M.A.4
Soto, J.5
-
5
-
-
3242796555
-
-
J. Y. Kwon, N. J. Singh, H. N. Kim, S. K. Kim, K. S. Kim, J. Yoon, J. Am. Chem. Soc. 2004, 126, 8892.
-
(2004)
J. Am. Chem. Soc
, vol.126
, pp. 8892
-
-
Kwon, J.Y.1
Singh, N.J.2
Kim, H.N.3
Kim, S.K.4
Kim, K.S.5
Yoon, J.6
-
6
-
-
0027236428
-
-
a) M. Shionoya, E. Kimura, M. Shiro, J. Am. Chem. Soc. 1993, 115, 6730;
-
(1993)
J. Am. Chem. Soc
, vol.115
, pp. 6730
-
-
Shionoya, M.1
Kimura, E.2
Shiro, M.3
-
7
-
-
0028180563
-
-
b) M. Shionoya, T. Ikeda, E. Kimura, M. Shiro, J. Am. Chem. Soc. 1994, 116, 3848;
-
(1994)
J. Am. Chem. Soc
, vol.116
, pp. 3848
-
-
Shionoya, M.1
Ikeda, T.2
Kimura, E.3
Shiro, M.4
-
8
-
-
0034679093
-
-
c) E. Kimura, H. Kitamura, K. Ohtani, T. Koike, J. Am. Chem. Soc. 2000, 122, 4668;
-
(2000)
J. Am. Chem. Soc
, vol.122
, pp. 4668
-
-
Kimura, E.1
Kitamura, H.2
Ohtani, K.3
Koike, T.4
-
10
-
-
33744532301
-
-
K. K.-W. Lo, W.-K. Hui, C.-K. Chung, K. H.-K. Tsang, T. K.-M. Lee, C.-K. Li, J. S.-Y. Lau, D. C.-M. Ng, Coord. Chem. Rev. 2006, 250, 1724.
-
(2006)
Coord. Chem. Rev
, vol.250
, pp. 1724
-
-
Lo, K.K.-W.1
Hui, W.-K.2
Chung, C.-K.3
Tsang, K.H.-K.4
Lee, T.K.-M.5
Li, C.-K.6
Lau, J.S.-Y.7
Ng, D.C.-M.8
-
11
-
-
34547683199
-
-
a) T.-H. Kwon, M. K. Kim, J. Kwon, S.-J. Park, D. Y. Shin, C.-L. Lee, J.-J. Kim, J.-I. Hong, Chem. Mater. 2007, 19, 3673;
-
(2007)
Chem. Mater
, vol.19
, pp. 3673
-
-
Kwon, T.-H.1
Kim, M.K.2
Kwon, J.3
Park, S.-J.4
Shin, D.Y.5
Lee, C.-L.6
Kim, J.-J.7
Hong, J.-I.8
-
12
-
-
41149175174
-
-
b) T.-H. Kwon, J. Kwon, J.-I. Hong, J. Am. Chem. Soc. 2008, 130, 3726.
-
(2008)
J. Am. Chem. Soc
, vol.130
, pp. 3726
-
-
Kwon, T.-H.1
Kwon, J.2
Hong, J.-I.3
-
13
-
-
0037651095
-
-
R. J. Holmes, S. R. Forrest, Y.-J. Tung, R. C. Kwong, J. J. Brown, S. Garon, M. E. Thompson, Appl. Phys. Lett. 2003, 82, 2422.
-
(2003)
Appl. Phys. Lett
, vol.82
, pp. 2422
-
-
Holmes, R.J.1
Forrest, S.R.2
Tung, Y.-J.3
Kwong, R.C.4
Brown, J.J.5
Garon, S.6
Thompson, M.E.7
-
14
-
-
0037528046
-
-
a) D. H. Lee, J. H. Im, S. U. Son, Y. K. Chung, J.-I. Hong, J. Am. Chem. Soc. 2003, 125, 7752;
-
(2003)
J. Am. Chem. Soc
, vol.125
, pp. 7752
-
-
Lee, D.H.1
Im, J.H.2
Son, S.U.3
Chung, Y.K.4
Hong, J.-I.5
-
15
-
-
26844529945
-
-
b) D. H. Lee, S. Y. Kim, J.-I. Hong, Angew. Chem. 2004, 116, 4881;
-
(2004)
Angew. Chem
, vol.116
, pp. 4881
-
-
Lee, D.H.1
Kim, S.Y.2
Hong, J.-I.3
-
17
-
-
55049102297
-
-
In this system, two equivalents of compound 2 were used because an excess of compound 2 can prevent any possible binding between the Zn 2+-cyclen moiety of compound 1 and the phosphate moiety of TTP. Although two equivalents of compound 2 and one equivalent of TTP can form 2:1 binding, the addition of one equivalent of compound 1 to this solution would cause weak binding between the Zn2+-DPA unit of compound 2 and the imide unit of TTP to be easily broken and then replaced with stronger binding between the Zn2+-cyclen unit of compound 1 and the imide part of TTP. In addition, the residual compound 2 has little influence on the emission intensity when excited at the donor absorption because of the long distance between the donor and the acceptor, as shown in the Supporting Information. Therefore, we can expect that the ensemble system shows 1:1:1 binding mode, as shown in Figure 1
-
2+-cyclen unit of compound 1 and the imide part of TTP. In addition, the residual compound 2 has little influence on the emission intensity when excited at the donor absorption because of the long distance between the donor and the acceptor, as shown in the Supporting Information. Therefore, we can expect that the ensemble system shows 1:1:1 binding mode, as shown in Figure 1.
-
-
-
-
18
-
-
27744507868
-
-
a) W. R. Glomm, S. Volden, J. Sjöblom, M. Lindgren, Chem. Mater. 2005, 17, 5512;
-
(2005)
Chem. Mater
, vol.17
, pp. 5512
-
-
Glomm, W.R.1
Volden, S.2
Sjöblom, J.3
Lindgren, M.4
-
19
-
-
15944408328
-
-
b) J. Li, P. I. Djurovich, B. D. Alleyne, M. Yousufuddin, N. N. Ho, J. C. Thomas, J. C. Peters, R. Bau, M. E. Thompson, Inorg. Chem. 2005, 44, 1713.
-
(2005)
Inorg. Chem
, vol.44
, pp. 1713
-
-
Li, J.1
Djurovich, P.I.2
Alleyne, B.D.3
Yousufuddin, M.4
Ho, N.N.5
Thomas, J.C.6
Peters, J.C.7
Bau, R.8
Thompson, M.E.9
-
20
-
-
12344322395
-
-
I. R. Laskar, S.-F. Hsu, T.-M. Chen, Polyhedron 2005, 24, 189.
-
(2005)
Polyhedron
, vol.24
, pp. 189
-
-
Laskar, I.R.1
Hsu, S.-F.2
Chen, T.-M.3
-
21
-
-
55049126394
-
-
We assume that the mCP moiety of 1 and the FIrpic moiety of 2 are located within the effective Dexter energy-transfer distance (<20 Å) for a good wavefunction overlap between mCP and FIrpic upon 1:1:1 complexation, as shown in Figure 1.[6
-
[6]
-
-
-
-
22
-
-
0030954582
-
-
E. Kimura, S. Aoki, T. Koike, M. Shiro, J. Am. Chem. Soc. 1997, 119, 3068.
-
(1997)
J. Am. Chem. Soc
, vol.119
, pp. 3068
-
-
Kimura, E.1
Aoki, S.2
Koike, T.3
Shiro, M.4
|