메뉴 건너뛰기




Volumn 25, Issue 5, 2008, Pages 431-443

Signal-to-noise ratios for measuring saliency of features extracted by eigenvector methods from ophthalmic arterial Doppler signals

Author keywords

Eigenvector methods; Feature saliency; Ophthalmic arterial Doppler signal classification; Signal to noise ratio

Indexed keywords

ACOUSTIC INTENSITY; EIGENVALUES AND EIGENFUNCTIONS; NETWORK PROTOCOLS; NEURAL NETWORKS; RECURRENT NEURAL NETWORKS; SENSOR NETWORKS; SIGNAL TO NOISE RATIO;

EID: 54849438419     PISSN: 02664720     EISSN: 14680394     Source Type: Journal    
DOI: 10.1111/j.1468-0394.2008.00450.x     Document Type: Article
Times cited : (3)

References (30)
  • 2
    • 0001024110 scopus 로고
    • First- and second-order methods for learning: Between steepest descent and Newton's method
    • Battiti, R. (1992) First- and second-order methods for learning: between steepest descent and Newton's method, Neural Computation, 4, 141 166.
    • (1992) Neural Computation , vol.4 , pp. 141-166
    • Battiti, R.1
  • 3
    • 0342546478 scopus 로고    scopus 로고
    • Feature screening using signal-to-noise ratios
    • Bauer, K.W., S.G. Alsing K.A. Greene (2000) Feature screening using signal-to-noise ratios, Neurocomputing, 31, 29 44.
    • (2000) Neurocomputing , vol.31 , pp. 29-44
    • Bauer, K.W.1    Alsing, S.G.2    Greene, K.A.3
  • 4
    • 0034283761 scopus 로고    scopus 로고
    • Efficient training and improved performance of multilayer perceptron in pattern classification
    • Chaudhuri, B.B. U. Bhattacharya (2000) Efficient training and improved performance of multilayer perceptron in pattern classification, Neurocomputing, 34, 11 27.
    • (2000) Neurocomputing , vol.34 , pp. 11-27
    • Chaudhuri, B.B.1    Bhattacharya, U.2
  • 5
    • 26444565569 scopus 로고
    • Finding structure in time
    • Elman, J.L. (1990) Finding structure in time, Cognitive Science, 14 (2), 179 211.
    • (1990) Cognitive Science , vol.14 , Issue.2 , pp. 179-211
    • Elman, J.L.1
  • 7
    • 29144441516 scopus 로고    scopus 로고
    • Feature saliency using signal-to-noise ratios in automated diagnostic systems developed for Doppler ultrasound signals
    • Güler, İ. E.D. Übeyi (2006a) Feature saliency using signal-to-noise ratios in automated diagnostic systems developed for Doppler ultrasound signals, Engineering Applications of Artificial Intelligence, 19 (1), 53 63.
    • (2006) Engineering Applications of Artificial Intelligence , vol.19 , Issue.1 , pp. 53-63
    • Güler, I.1    Übeyi, E.D.2
  • 8
    • 33745839826 scopus 로고    scopus 로고
    • A recurrent neural network classifier for Doppler ultrasound blood flow signals
    • Güler, İ. E.D. Übeyli (2006b) A recurrent neural network classifier for Doppler ultrasound blood flow signals, Pattern Recognition Letters, 27 (13), 1560 1571.
    • (2006) Pattern Recognition Letters , vol.27 , Issue.13 , pp. 1560-1571
    • Güler, I.1    Übeyli, E.D.2
  • 9
    • 0034559507 scopus 로고    scopus 로고
    • Investigating the prediction capabilities of the simple recurrent neural network on real temporal sequences
    • Gupta, L. M. McAvoy (2000) Investigating the prediction capabilities of the simple recurrent neural network on real temporal sequences, Pattern Recognition, 33 (12), 2075 2081.
    • (2000) Pattern Recognition , vol.33 , Issue.12 , pp. 2075-2081
    • Gupta, L.1    McAvoy, M.2
  • 10
    • 0034301714 scopus 로고    scopus 로고
    • Classification of temporal sequences via prediction using the simple recurrent neural network
    • Gupta, L., M. McAvoy J. Phegley (2000) Classification of temporal sequences via prediction using the simple recurrent neural network, Pattern Recognition, 33 (10), 1759 1770.
    • (2000) Pattern Recognition , vol.33 , Issue.10 , pp. 1759-1770
    • Gupta, L.1    McAvoy, M.2    Phegley, J.3
  • 11
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • Hagan, M.T. M.B. Menhaj (1994) Training feedforward networks with the Marquardt algorithm, IEEE Transactions on Neural Networks, 5 (6), 989 993.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2
  • 14
    • 0036127473 scopus 로고    scopus 로고
    • Input feature selection for classification problems
    • Kwak, N. C.-H. Choi (2002) Input feature selection for classification problems, IEEE Transactions on Neural Networks, 13 (1), 143 159.
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.1 , pp. 143-159
    • Kwak, N.1    Choi, C.-H.2
  • 16
    • 0033990625 scopus 로고    scopus 로고
    • Recurrent neural network based prediction of epileptic seizures in intra- and extracranial EEG
    • Petrosian, A., D. Prokhorov, R. Homan, R. Dasheiff D. Wunsch II. (2000) Recurrent neural network based prediction of epileptic seizures in intra- and extracranial EEG, Neurocomputing, 30, 201 218.
    • (2000) Neurocomputing , vol.30 , pp. 201-218
    • Petrosian, A.1    Prokhorov, D.2    Homan, R.3    Dasheiff, R.4    Wunsch, I.I.D.5
  • 17
    • 0034923224 scopus 로고    scopus 로고
    • Recurrent neural network-based approach for early recognition of Alzheimer's disease in EEG
    • Petrosian, A.A., D.V. Prokhorov, W. Lajara-Nanson R.B. Schiffer (2001) Recurrent neural network-based approach for early recognition of Alzheimer's disease in EEG, Clinical Neurophysiology, 112 (8), 1378 1387.
    • (2001) Clinical Neurophysiology , vol.112 , Issue.8 , pp. 1378-1387
    • Petrosian, A.A.1    Prokhorov, D.V.2    Lajara-Nanson, W.3    Schiffer, R.B.4
  • 18
    • 0000442791 scopus 로고
    • Generalization of back-propagation to recurrent neural networks
    • Pineda, F.J. (1987) Generalization of back-propagation to recurrent neural networks, Physical Review Letters, 59 (19), 2229 2232.
    • (1987) Physical Review Letters , vol.59 , Issue.19 , pp. 2229-2232
    • Pineda, F.J.1
  • 20
    • 0032207527 scopus 로고    scopus 로고
    • Comparative study of stock trend prediction using time delay, recurrent and probabilistic neural networks
    • Saad, E.W., D.V. Prokhorov D.C. Wunsch II. (1998) Comparative study of stock trend prediction using time delay, recurrent and probabilistic neural networks, IEEE Transactions on Neural Networks, 9 (6), 1456 1470.
    • (1998) IEEE Transactions on Neural Networks , vol.9 , Issue.6 , pp. 1456-1470
    • Saad, E.W.1    Prokhorov, D.V.2    Wunsch, I.I.D.C.3
  • 21
    • 1542786173 scopus 로고    scopus 로고
    • Intracranial pressure model in intensive care unit using a simple recurrent neural network through time
    • Shieh, J.-S., C.-F. Chou, S.-J. Huang M.-C. Kao (2004) Intracranial pressure model in intensive care unit using a simple recurrent neural network through time, Neurocomputing, 57, 239 256.
    • (2004) Neurocomputing , vol.57 , pp. 239-256
    • Shieh, J.-S.1    Chou, C.-F.2    Huang, S.-J.3    Kao, M.-C.4
  • 22
    • 0031987311 scopus 로고    scopus 로고
    • A brief history of Doppler ultrasound in the diagnosis of peripheral vascular disease
    • Sigel, B. (1998) A brief history of Doppler ultrasound in the diagnosis of peripheral vascular disease, Ultrasound in Medicine and Biology, 24, 169 176.
    • (1998) Ultrasound in Medicine and Biology , vol.24 , pp. 169-176
    • Sigel, B.1
  • 23
    • 0030248249 scopus 로고    scopus 로고
    • Improved feature screening in feedforward neural networks
    • Steppe, J.M. K.W. Bauer (1996) Improved feature screening in feedforward neural networks, Neurocomputing, 13 (1), 47 58.
    • (1996) Neurocomputing , vol.13 , Issue.1 , pp. 47-58
    • Steppe, J.M.1    Bauer, K.W.2
  • 26
    • 1542679215 scopus 로고    scopus 로고
    • Comparison of eigenvector methods with classical and model-based methods in analysis of internal carotid arterial Doppler signals
    • Übeyli, E.D. İ. Güler (2003) Comparison of eigenvector methods with classical and model-based methods in analysis of internal carotid arterial Doppler signals, Computers in Biology and Medicine, 33 (6), 473 493.
    • (2003) Computers in Biology and Medicine , vol.33 , Issue.6 , pp. 473-493
    • Übeyli, E.D.1    Güler, I.2
  • 27
    • 27744513132 scopus 로고    scopus 로고
    • Feature extraction from Doppler ultrasound signals for automated diagnostic systems
    • Übeyli, E.D. İ. Güler (2005) Feature extraction from Doppler ultrasound signals for automated diagnostic systems, Computers in Biology and Medicine, 35 (9), 735 764.
    • (2005) Computers in Biology and Medicine , vol.35 , Issue.9 , pp. 735-764
    • Übeyli, E.D.1    Güler, I.2
  • 28
    • 33750721675 scopus 로고    scopus 로고
    • Performance analysis of classical, model-based and eigenvector methods: Ophthalmic arterial disorders detection case
    • Übeyli, E.D. İ. Güler (2007) Performance analysis of classical, model-based and eigenvector methods: ophthalmic arterial disorders detection case, Computers and Electrical Engineering, 33 (1), 30 47.
    • (2007) Computers and Electrical Engineering , vol.33 , Issue.1 , pp. 30-47
    • Übeyli, E.D.1    Güler, I.2
  • 29
    • 0033009092 scopus 로고    scopus 로고
    • Artificial neural network analysis of common femoral artery Doppler shift signals: Classification of proximal disease
    • Wright, I.A. N.A.J. Gough (1999) Artificial neural network analysis of common femoral artery Doppler shift signals: classification of proximal disease, Ultrasound in Medicine and Biology, 24, 735 743.
    • (1999) Ultrasound in Medicine and Biology , vol.24 , pp. 735-743
    • Wright, I.A.1    Gough, N.A.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.