메뉴 건너뛰기




Volumn 33, Issue 10, 2000, Pages 1759-1770

Classification of temporal sequences via prediction using the simple recurrent neural network

Author keywords

[No Author keywords available]

Indexed keywords

MULTILAYER NEURAL NETWORKS; OBJECT RECOGNITION; VECTORS;

EID: 0034301714     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0031-3203(99)00149-1     Document Type: Article
Times cited : (33)

References (38)
  • 1
    • 0025254722 scopus 로고
    • A time-delay neural network architecture for isolated word recognition
    • K.J. Lang A.H. Waibel A time-delay neural network architecture for isolated word recognition Neural Networks 3 1990 23 43
    • (1990) Neural Networks , vol.3 , pp. 23-43
    • Lang, K.J.1    Waibel, A.H.2
  • 2
    • 84935413199 scopus 로고
    • Modular construction of time delay neural networks for speech recognition
    • A. Waibel Modular construction of time delay neural networks for speech recognition Neural Comput. 1 1989 39 446
    • (1989) Neural Comput. , vol.1 , pp. 39-446
    • Waibel, A.1
  • 3
    • 0023936027 scopus 로고
    • Learning the hidden structure of speech
    • J.L. Elman D. Zipser Learning the hidden structure of speech J. Acoust. Soc. Amer. 83 1988 1615 1626
    • (1988) J. Acoust. Soc. Amer. , vol.83 , pp. 1615-1626
    • Elman, J.L.1    Zipser, D.2
  • 4
    • 0025662784 scopus 로고
    • Experiments for isolated-word recognition with single- and two-layer perceptrons
    • B.R. Kammerer W.A. Kupper Experiments for isolated-word recognition with single- and two-layer perceptrons Neural Networks 3 6 1990 693 706
    • (1990) Neural Networks , vol.3 , Issue.6 , pp. 693-706
    • Kammerer, B.R.1    Kupper, W.A.2
  • 5
    • 0029327528 scopus 로고
    • Speech recognition with hierarchical recurrent neural networks
    • W.Y. Chen Y.F. Liao S.H. Chen Speech recognition with hierarchical recurrent neural networks Pattern Recognition 28 6 1995 795 805
    • (1995) Pattern Recognition , vol.28 , Issue.6 , pp. 795-805
    • Chen, W.Y.1    Liao, Y.F.2    Chen, S.H.3
  • 6
    • 0028554080 scopus 로고
    • Three-layer perceptron based classifiers for the partial shape classification problem
    • L. Gupta J. Wang A. Charles P. Kisatsky Three-layer perceptron based classifiers for the partial shape classification problem Pattern Recognition 27 1 1994 91 97
    • (1994) Pattern Recognition , vol.27 , Issue.1 , pp. 91-97
    • Gupta, L.1    Wang, J.2    Charles, A.3    Kisatsky, P.4
  • 7
    • 0029386463 scopus 로고
    • Robust automatic target recognition using a localized boundary representation
    • L. Gupta T. Sortrakul A. Charles P. Kisatsky Robust automatic target recognition using a localized boundary representation Pattern Recognition 28 10 1995 1587 1598
    • (1995) Pattern Recognition , vol.28 , Issue.10 , pp. 1587-1598
    • Gupta, L.1    Sortrakul, T.2    Charles, A.3    Kisatsky, P.4
  • 8
    • 0022603247 scopus 로고
    • HYPER: A new approach for the recognition and positioning of two-dimensional objects
    • N. Ayache O.D. Faugeras HYPER A new approach for the recognition and positioning of two-dimensional objects IEEE Trans. Pattern Anal. Mach. Intell. PAMI-8 1 1986 44 54
    • (1986) IEEE Trans. Pattern Anal. Mach. Intell. , vol.PAMI-8 , Issue.1 , pp. 44-54
    • Ayache, N.1    Faugeras, O.D.2
  • 9
    • 0025603532 scopus 로고
    • Robust partial shape classification using invariant breakpoints and dynamic alignment
    • L. Gupta K. Malakapalli Robust partial shape classification using invariant breakpoints and dynamic alignment Pattern Recognition 23 10 1990 1103 1111
    • (1990) Pattern Recognition , vol.23 , Issue.10 , pp. 1103-1111
    • Gupta, L.1    Malakapalli, K.2
  • 10
    • 0026359016 scopus 로고
    • Non-linear alignment of neural net outputs for partial shape classification
    • L. Gupta A.M. Upadhye Non-linear alignment of neural net outputs for partial shape classification Pattern Recognition 24 10 1991 943 948
    • (1991) Pattern Recognition , vol.24 , Issue.10 , pp. 943-948
    • Gupta, L.1    Upadhye, A.M.2
  • 11
    • 0022686068 scopus 로고
    • Recognizing partially visible objects using feature indexed hypotheses
    • T.F. Knoll R.C. Jain Recognizing partially visible objects using feature indexed hypotheses IEEE J. Robotics Automat. RA-2 1 1986 3 13
    • (1986) IEEE J. Robotics Automat. , vol.RA-2 , Issue.1 , pp. 3-13
    • Knoll, T.F.1    Jain, R.C.2
  • 12
    • 85120135579 scopus 로고    scopus 로고
    • T.J. Sejnowski, C.R. Rosenberg, NETtalk: a parallel network that learns to read aloud, Technical Report JHU/EECS-86/01, John Hopkins University, Baltimore, January 1986.
  • 13
    • 0002748218 scopus 로고
    • How neural networks work
    • A.S. Lapedes R. Faber How neural networks work Dana Z. Anderson Neural Information Processing Systems 1988 American Institute of Physics New York 442 456
    • (1988) , pp. 442-456
    • Lapedes, A.S.1    Faber, R.2
  • 14
    • 0000646059 scopus 로고
    • Learning internal representations by error propagation
    • D.E. Rumelhart G.E. Hinton R.J. Williams Learning internal representations by error propagation D.E. Rumelhart J.L. McClelland Parallel and Distributed Processing Vol. I 1986 MIT Press Cambridge, MA (Chapter 8)
    • (1986)
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 15
    • 85120141362 scopus 로고    scopus 로고
    • P.J. Werbos, Backpropagation through time: what it does and how it does it, Proceedings of the IEEE, 78 (1990) 1550–1560.
  • 16
    • 0001414608 scopus 로고
    • Generalization of backpropagation to recurrent and higher order neural networks
    • F.J. Pineda Generalization of backpropagation to recurrent and higher order neural networks Dana Z. Anderson Neural Information Processing Systems 1988 American Institute of Physics New York 602 611
    • (1988) , pp. 602-611
    • Pineda, F.J.1
  • 17
    • 0002610754 scopus 로고
    • Backpropagation in perceptrons with feedback
    • L.B. Almeida Backpropagation in perceptrons with feedback R. Eckmiller C. von der Malsburg Neural Computers 1988 Springer Berlin 199 208
    • (1988) , pp. 199-208
    • Almeida, L.B.1
  • 18
    • 0001202597 scopus 로고
    • Learning state space trajectories in recurrent neural networks
    • B.A. Pearlmutter Learning state space trajectories in recurrent neural networks Neural Comput. 1 2 1989 263 269
    • (1989) Neural Comput. , vol.1 , Issue.2 , pp. 263-269
    • Pearlmutter, B.A.1
  • 19
    • 85120126412 scopus 로고    scopus 로고
    • A.M. Loger, E.M. Corwin, W.J.B. Oldham, A comparison of recurrent neural network algorithms, Proceedings of IEEE International Conference of Neural Networks, San Francisco, Vol. II, 1993, pp. 1129–1134.
  • 20
    • 0001202594 scopus 로고
    • A learning algorithm for continually running fully recurrent neural networks
    • R.J. Williams D. Zipser A learning algorithm for continually running fully recurrent neural networks Neural Comput. 1 2 1989 270 280
    • (1989) Neural Comput. , vol.1 , Issue.2 , pp. 270-280
    • Williams, R.J.1    Zipser, D.2
  • 21
    • 85120104954 scopus 로고    scopus 로고
    • M.I. Jordan, Supervised learning systems with excess degrees of freedom, Massachusetts Institute of Technology, COINS Technical Report 88-27, May 1988.
  • 22
    • 84945787268 scopus 로고
    • Representation and recognition of temporal patterns
    • R.F. Port Representation and recognition of temporal patterns Connection Sci. 1–2 1990 15 76
    • (1990) Connection Sci. , vol.1–2 , pp. 15-76
    • Port, R.F.1
  • 23
    • 26444565569 scopus 로고
    • Finding structure in time
    • J.L. Elman Finding structure in time Cognitive Sci. 14 1990 179 211
    • (1990) Cognitive Sci. , vol.14 , pp. 179-211
    • Elman, J.L.1
  • 24
    • 0001419757 scopus 로고
    • Distributed representations, simple recurrent networks, and grammatical inference
    • J.L. Elman Distributed representations, simple recurrent networks, and grammatical inference Mach. Learning 7 2/3 1991 19 121
    • (1991) Mach. Learning , vol.7 , Issue.2/3 , pp. 19-121
    • Elman, J.L.1
  • 26
    • 85120126758 scopus 로고    scopus 로고
    • J. Ghosh, V. Karamcheti, Sequence learning with recurrent networks: analysis of internal representations, Sci. Artif. Neural Networks SPIE Vol. 1710, (1992) 449–460.
  • 27
    • 0030273680 scopus 로고    scopus 로고
    • On temporal generalization of simple recurrent networks
    • D. Wang X. Liu S.C. Ahalt On temporal generalization of simple recurrent networks Neural Networks 9 7 1996 1099 1118
    • (1996) Neural Networks , vol.9 , Issue.7 , pp. 1099-1118
    • Wang, D.1    Liu, X.2    Ahalt, S.C.3
  • 28
    • 85120128318 scopus 로고    scopus 로고
    • L. Gupta, M. McAvoy, Investigating the prediction capabilities of the simple recurrent neural network on temporal sequences, Pattern Recognition (1999) in press.
  • 29
    • 85120133416 scopus 로고    scopus 로고
    • R. Blake, Analysis of sequence prediction in recurrent neural networks, M.S. Thesis, Department of Electrical Engineering, Southern Illinois University, Carbondale, 1996.
  • 30
    • 0023386120 scopus 로고
    • Using polygons to recognize and locate partially occluded objects
    • M.W. Koch R.L. Kashyap Using polygons to recognize and locate partially occluded objects IEEE Trans. Pattern Anal. Mach. Intell. PAMI-9 4 1987 483 494
    • (1987) IEEE Trans. Pattern Anal. Mach. Intell. , vol.PAMI-9 , Issue.4 , pp. 483-494
    • Koch, M.W.1    Kashyap, R.L.2
  • 32
    • 0025518951 scopus 로고
    • Partial shape classification using contour matching in distance transformation
    • H.C. Liu M.D. Srinath Partial shape classification using contour matching in distance transformation IEEE Trans. Pattern Anal. Mach. Intell. PAMI-12 11 1990 1072 1079
    • (1990) IEEE Trans. Pattern Anal. Mach. Intell. , vol.PAMI-12 , Issue.11 , pp. 1072-1079
    • Liu, H.C.1    Srinath, M.D.2
  • 34
    • 0343526567 scopus 로고
    • Nets with unreliable hidden nodes learn error-correcting codes
    • S. Judd P.W. Munro Nets with unreliable hidden nodes learn error-correcting codes S.J. Hanson J.D. Cowan C.L. Giles Advances in Neural Information Processing Systems Vol. 5 1993 Morgan Kaufmann San Mateo, CA 89 96
    • (1993) , pp. 89-96
    • Judd, S.1    Munro, P.W.2
  • 35
    • 0028494739 scopus 로고
    • Enhanced MLP performance and fault tolerance resulting from synaptic weight noise during training
    • A.F. Murray P.J. Edwards Enhanced MLP performance and fault tolerance resulting from synaptic weight noise during training IEEE Trans. Neural Networks 5 1994 792 802
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 792-802
    • Murray, A.F.1    Edwards, P.J.2
  • 36
    • 0342990011 scopus 로고    scopus 로고
    • An analysis of noise in recurrent neural networks: convergence and generalization
    • K.-C. Jim C.L. Giles B.G. Horne An analysis of noise in recurrent neural networks convergence and generalization IEEE Trans. Neural Networks 7 6 1996 1424 1438
    • (1996) IEEE Trans. Neural Networks , vol.7 , Issue.6 , pp. 1424-1438
    • Jim, K.-C.1    Giles, C.L.2    Horne, B.G.3
  • 37
    • 0025636756 scopus 로고
    • A neural network approach to robust shape classification
    • L. Gupta M.R. Sayeh R. Tammana A neural network approach to robust shape classification Pattern Recognition 23 6 1990 563 568
    • (1990) Pattern Recognition , vol.23 , Issue.6 , pp. 563-568
    • Gupta, L.1    Sayeh, M.R.2    Tammana, R.3
  • 38
    • 0028495332 scopus 로고
    • Pruning recurrent neural networks for improved generalization performance
    • C.L. Giles C. Omlin Pruning recurrent neural networks for improved generalization performance IEEE Trans. Neural Networks 5 5 1994 848 851
    • (1994) IEEE Trans. Neural Networks , vol.5 , Issue.5 , pp. 848-851
    • Giles, C.L.1    Omlin, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.