메뉴 건너뛰기




Volumn 38, Issue 10, 2008, Pages 2626-2634

On the selection of samples for multivariate regression analysis: Application to near-infrared (NIR) calibration models for the prediction of pulp yield in Eucalyptus nitens

Author keywords

[No Author keywords available]

Indexed keywords

CALIBRATION; COMPUTER AIDED ANALYSIS; COMPUTER AIDED DESIGN; DESIGN OF EXPERIMENTS; ERRORS; FORECASTING; INFRARED DEVICES; KRAFT PROCESS; KRAFT PULP; PULP; REGRESSION ANALYSIS; SET THEORY;

EID: 54349091167     PISSN: 00455067     EISSN: None     Source Type: Journal    
DOI: 10.1139/X08-099     Document Type: Article
Times cited : (33)

References (24)
  • 1
    • 39949083755 scopus 로고    scopus 로고
    • Cross-validation of component models: A critical look at current methods
    • doi:10.1007/s00216-007-1790-1
    • Bro, R., Kjeldahl, K., Smilde, A.K., and Kiers, H.A.L. 2008. Cross-validation of component models: a critical look at current methods. Anal. Bioanal. Chem. 390(5): 1241-1251. doi:10.1007/s00216-007-1790-1.
    • (2008) Anal. Bioanal. Chem , vol.390 , Issue.5 , pp. 1241-1251
    • Bro, R.1    Kjeldahl, K.2    Smilde, A.K.3    Kiers, H.A.L.4
  • 2
    • 0000684663 scopus 로고    scopus 로고
    • OptiSim: An extended dissimilarity selection method for finding diverse representative subsets
    • doi:10.1021/ci970282v
    • Clark, R. 1997. OptiSim: an extended dissimilarity selection method for finding diverse representative subsets. J. Chem. Inf. Comput. Sci. 37: 1181-1188. doi:10.1021/ci970282v.
    • (1997) J. Chem. Inf. Comput. Sci , vol.37 , pp. 1181-1188
    • Clark, R.1
  • 3
    • 0037057102 scopus 로고    scopus 로고
    • Representative subset selection
    • doi:10.1016/S0003- 2670(02)00651-7
    • Daszykowski, M., Walczak, B., and Massart, D.L. 2002. Representative subset selection. Anal. Chim. Acta, 468: 91-103. doi:10.1016/S0003- 2670(02)00651-7.
    • (2002) Anal. Chim. Acta , vol.468 , pp. 91-103
    • Daszykowski, M.1    Walczak, B.2    Massart, D.L.3
  • 6
    • 0022138053 scopus 로고
    • Unique-sample selection via near-infrared spectral substraction
    • PMID:4061840, doi:10.1021/ac00289a029
    • Honigs, D.E., Hieftje, G.M., Mark, H.L., and Hirschfeld, T.B. 1985. Unique-sample selection via near-infrared spectral substraction. Anal. Chem. 57: 2299-2303. doi:10.1021/ac00289a029. PMID:4061840.
    • (1985) Anal. Chem , vol.57 , pp. 2299-2303
    • Honigs, D.E.1    Hieftje, G.M.2    Mark, H.L.3    Hirschfeld, T.B.4
  • 7
    • 0025470224 scopus 로고
    • selection of samples for calibration in near-infrared spectroscopy. Part II. selection based on spectral measurements
    • doi:10.1366/ 0003702904086533
    • Isaksson, T., and Næs, T. 1990. selection of samples for calibration in near-infrared spectroscopy. Part II. selection based on spectral measurements. Appl. Spectrosc. 44: 1152-1158. doi:10.1366/ 0003702904086533.
    • (1990) Appl. Spectrosc , vol.44 , pp. 1152-1158
    • Isaksson, T.1    Næs, T.2
  • 8
    • 0018503842 scopus 로고
    • Control procedures for residuals associated with principal component analysis
    • doi:10.2307/1267757
    • Jackson, J.E., and Mudholkar, G.S. 1979. Control procedures for residuals associated with principal component analysis. Technometrics, 21: 341-349 . doi:10.2307/1267757.
    • (1979) Technometrics , vol.21 , pp. 341-349
    • Jackson, J.E.1    Mudholkar, G.S.2
  • 10
    • 84894887900 scopus 로고
    • Computer aided design of experiments
    • doi:10.2307/1266770
    • Kennard, R.W., and Stone, L.A. 1969. Computer aided design of experiments. Technometrics, 11: 137-148. doi:10.2307/1266770.
    • (1969) Technometrics , vol.11 , pp. 137-148
    • Kennard, R.W.1    Stone, L.A.2
  • 13
    • 43949170124 scopus 로고
    • Statistical validation
    • doi:10.1016/0304-3800(93)90105-2
    • Mayer, D.G., and Butler, D.G. 1993. Statistical validation. Ecol. Modell. 68: 21-32. doi:10.1016/0304-3800(93)90105-2.
    • (1993) Ecol. Modell , vol.68 , pp. 21-32
    • Mayer, D.G.1    Butler, D.G.2
  • 14
    • 16244390208 scopus 로고    scopus 로고
    • Mean squared error of prediction (MSEP) estimates for principal component regression (PCR) and partial least squares regression (PLSR)
    • doi:10.1002/cem.887
    • Mevik, B.H., and Cederkvist, H.R. 2004. Mean squared error of prediction (MSEP) estimates for principal component regression (PCR) and partial least squares regression (PLSR). J. Chemometr. 18: 422-429. doi:10.1002/cem.887.
    • (2004) J. Chemometr , vol.18 , pp. 422-429
    • Mevik, B.H.1    Cederkvist, H.R.2
  • 15
    • 33846829987 scopus 로고    scopus 로고
    • Mevik, B.-H., and Wehrens, R. 2004. The pls package: principal component and partial least squares regression in R. J. Stat. Software, 18(2).Available from http://www.jstatsoft.org/v18/i02.
    • Mevik, B.-H., and Wehrens, R. 2004. The pls package: principal component and partial least squares regression in R. J. Stat. Software, 18(2).Available from http://www.jstatsoft.org/v18/i02.
  • 17
    • 85207089353 scopus 로고
    • The design of calibration in near infrared reflectance analysis by clustering
    • doi:10.1002/cem.1180010207
    • Næs, T. 1987. The design of calibration in near infrared reflectance analysis by clustering. J. Chemometr. 1: 121-134. doi:10.1002/cem.1180010207.
    • (1987) J. Chemometr , vol.1 , pp. 121-134
    • Næs, T.1
  • 19
    • 0004465510 scopus 로고
    • selection of calibration samples for near-infrared spectrometry by factor analysis of spectra
    • doi:10.1021/ac00157a015
    • Puchwein, G. 1988. selection of calibration samples for near-infrared spectrometry by factor analysis of spectra. Anal. Chem. 60: 569-573. doi:10.1021/ac00157a015.
    • (1988) Anal. Chem , vol.60 , pp. 569-573
    • Puchwein, G.1
  • 20
    • 5344244656 scopus 로고    scopus 로고
    • R Foundation for Statistical Computing, Vienna. Available from, accessed 14 February 2008
    • R Development Core Team. 2008. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available from http://www.r-project.org [accessed 14 February 2008].
    • (2008) R: A language and environment for statistical computing
  • 21
    • 0042553279 scopus 로고
    • Smoothing and differentiation of data by simplified least squares procedures
    • doi:10.1021/ac60214a047
    • Savitzky, A., and Golay, M.J.E. 1964. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36: 1627-1639. doi:10.1021/ac60214a047.
    • (1964) Anal. Chem , vol.36 , pp. 1627-1639
    • Savitzky, A.1    Golay, M.J.E.2
  • 22
    • 33645755786 scopus 로고    scopus 로고
    • Estimation of whole-tree kraft pulp yield of Eucalyptus nitens using near-infrared spectra collected from increment cores
    • doi:10.1139/x05-193
    • Schimleck, L.R., Kube, P.D., Raymond, C.A., Michell, A.J., and French, J. 2005. Estimation of whole-tree kraft pulp yield of Eucalyptus nitens using near-infrared spectra collected from increment cores. Can. J. For. Res. 35: 2797-2805. doi:10.1139/x05-193.
    • (2005) Can. J. For. Res , vol.35 , pp. 2797-2805
    • Schimleck, L.R.1    Kube, P.D.2    Raymond, C.A.3    Michell, A.J.4    French, J.5
  • 23
    • 0001606108 scopus 로고
    • Population, definition, sample selection, and calibration procedures for near-infrared reflectance spectroscopy
    • Shenk, J.S., and Westerhaus, M.O. 1991. Population, definition, sample selection, and calibration procedures for near-infrared reflectance spectroscopy. Crop Sci. 31: 469-474.
    • (1991) Crop Sci , vol.31 , pp. 469-474
    • Shenk, J.S.1    Westerhaus, M.O.2
  • 24
    • 84952126648 scopus 로고
    • Validation of regression models: Methods and examples
    • doi:10.2307/1267881
    • Snee, R. 1977. Validation of regression models: methods and examples. Technometrics, 19: 415-428. doi:10.2307/1267881.
    • (1977) Technometrics , vol.19 , pp. 415-428
    • Snee, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.