메뉴 건너뛰기




Volumn 42, Issue 4, 2008, Pages 469-484

Comparison of algorithms in graph partitioning

Author keywords

Graph partitioning; Partition comparison; Simulation

Indexed keywords

GRAPH ALGORITHMS; GRAPH STRUCTURES;

EID: 54249097414     PISSN: 03990559     EISSN: 28047303     Source Type: Journal    
DOI: 10.1051/ro:2008029     Document Type: Conference Paper
Times cited : (3)

References (26)
  • 1
    • 0029354779 scopus 로고
    • Recent direction in netlist partitioning: A survey
    • C.J. Alpert and A. Kang, Recent direction in netlist partitioning: a survey, Integration. VLSI J. 19 (1-2) (1995)1-81.
    • (1995) Integration. VLSI J , vol.19 , Issue.1-2 , pp. 1-81
    • Alpert, C.J.1    Kang, A.2
  • 2
    • 2942552459 scopus 로고    scopus 로고
    • An automated method for finding molecular complexes in large protein interaction networks
    • G.D. Bader and C.W. Hogue, An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4 (2) (2003) 27.
    • (2003) BMC Bioinformatics , vol.4 , Issue.2 , pp. 27
    • Bader, G.D.1    Hogue, C.W.2
  • 3
    • 0034609791 scopus 로고    scopus 로고
    • The large-scale organization of metabolic networks
    • L. Barabasi, The large-scale organization of metabolic networks. Nature 407 (2000) 651-654.
    • (2000) Nature , vol.407 , pp. 651-654
    • Barabasi, L.1
  • 4
    • 84958956637 scopus 로고    scopus 로고
    • Partitioning approach to visualisation of large graphs
    • Comput. Sci, Springer
    • V. Batagelj and M. Mrvar, Partitioning approach to visualisation of large graphs, Lect. Notes Comput. Sci. 1731, Springer (1999) 90-97.
    • (1999) Lect. Notes , vol.1731 , pp. 90-97
    • Batagelj, V.1    Mrvar, M.2
  • 6
    • 33751255087 scopus 로고    scopus 로고
    • Evaluation of clustering algorithms for protein-protein interaction networks
    • S. Brohée and J. van Helden, Evaluation of clustering algorithms for protein-protein interaction networks. BMC Bioinformatics 7 (2006) 488.
    • (2006) BMC Bioinformatics , vol.7 , pp. 488
    • Brohée, S.1    van Helden, J.2
  • 7
    • 13244292287 scopus 로고    scopus 로고
    • Clustering proteins from interaction networks for the prediction of cellular functions
    • C. Brun, C. Herrmann and A. Guénoche, Clustering proteins from interaction networks for the prediction of cellular functions. BMC Bioinformatics 5 (2004) 95.
    • (2004) BMC Bioinformatics , vol.5 , pp. 95
    • Brun, C.1    Herrmann, C.2    Guénoche, A.3
  • 8
    • 33746266541 scopus 로고    scopus 로고
    • Comparing partitions by element transfert
    • I. Charon, L. Denoeud, A. Guénoche, and O. Hudry, Comparing partitions by element transfert. J. Classif. 23 (1) (2006) 103-121.
    • (2006) J. Classif , vol.23 , Issue.1 , pp. 103-121
    • Charon, I.1    Denoeud, L.2    Guénoche, A.3    Hudry, O.4
  • 10
    • 0000093992 scopus 로고
    • The complexity of computing metric distances between partitions
    • W. Day, The complexity of computing metric distances between partitions. Math. Soc. Sci. 1 (1981) 269-287.
    • (1981) Math. Soc. Sci , vol.1 , pp. 269-287
    • Day, W.1
  • 13
    • 0036529479 scopus 로고    scopus 로고
    • An efficient algorithm for large-scale detection of protein families
    • A.J. Enright, S. van Dongen and L.A. Ouzounis, An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 30 (2002) 1575-1584.
    • (2002) Nucleic Acids Res , vol.30 , pp. 1575-1584
    • Enright, A.J.1    van Dongen, S.2    Ouzounis, L.A.3
  • 14
    • 0037062448 scopus 로고    scopus 로고
    • Community structure in social and biological networks
    • M. Girvan and M.E.J. Newman, Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 99 (2002) 7821-7826.
    • (2002) Proc. Natl. Acad. Sci. USA , vol.99 , pp. 7821-7826
    • Girvan, M.1    Newman, M.E.J.2
  • 15
    • 34247159942 scopus 로고    scopus 로고
    • Partitions optimisées selon différents critères; Evaluation et comparaison.
    • A. Guénoche, Partitions optimisées selon différents critères; Evaluation et comparaison. Math. Sci. Hum. 161 (2003) 41-58.
    • (2003) Math. Sci. Hum , vol.161 , pp. 41-58
    • Guénoche, A.1
  • 16
    • 54249115278 scopus 로고    scopus 로고
    • A. Guénoche, Clustering by vertex density in a graph, in Proceedings of IFCS congress. Classification, Clustering and Data Mining Applications, edited by D. Banks et al., Springer (2004) 15-24.
    • A. Guénoche, Clustering by vertex density in a graph, in Proceedings of IFCS congress. Classification, Clustering and Data Mining Applications, edited by D. Banks et al., Springer (2004) 15-24.
  • 17
    • 34250115918 scopus 로고
    • An examination of procedures for determining the number of clusters in a data set
    • G.W. Milligan and M.C. Cooper, An examination of procedures for determining the number of clusters in a data set. Psychometrica 50 (1985) 159-179.
    • (1985) Psychometrica , vol.50 , pp. 159-179
    • Milligan, G.W.1    Cooper, M.C.2
  • 18
    • 0042836679 scopus 로고    scopus 로고
    • Identifying dense clusters in large networks
    • J. Moody, Identifying dense clusters in large networks. Social Networks 23 (2001) 261-283.
    • (2001) Social Networks , vol.23 , pp. 261-283
    • Moody, J.1
  • 19
    • 84898073807 scopus 로고    scopus 로고
    • Shortest paths, weighted networks and centrality
    • Scientific Collaboration Networks
    • M.E.J. Newman, Scientific Collaboration Networks: Shortest paths, weighted networks and centrality. Phys. Rev. (2001) 64.
    • (2001) Phys. Rev , pp. 64
    • Newman, M.E.J.1
  • 20
    • 37649028224 scopus 로고    scopus 로고
    • Finding and evaluating community structure in networks
    • M.E.J Newman and M. Girvan, Finding and evaluating community structure in networks. Phys. Rev. E 69 (2004) 026113.
    • (2004) Phys. Rev. E , vol.69 , pp. 026113
    • Newman, M.E.J.1    Girvan, M.2
  • 21
    • 54249135707 scopus 로고    scopus 로고
    • M.E.J. Newman, Modularity and community structure in networks. arXiv:physics/0602124vl, (2006) 7 p.
    • M.E.J. Newman, Modularity and community structure in networks. arXiv:physics/0602124vl, (2006) 7 p.
  • 22
    • 38849162343 scopus 로고    scopus 로고
    • Computing communities in large networks using random walks
    • P. Pons and M. Latapy, Computing communities in large networks using random walks. J. Graph Algorithms Appl. 10 (2), (2006) 191-218.
    • (2006) J. Graph Algorithms Appl , vol.10 , Issue.2 , pp. 191-218
    • Pons, P.1    Latapy, M.2
  • 23
    • 0000006646 scopus 로고
    • Sur quelques aspects mathématiques des problèmes de classification automatique
    • S. Régnier, Sur quelques aspects mathématiques des problèmes de classification automatique. ICC Bulletin (1964).
    • (1964) ICC Bulletin
    • Régnier, S.1
  • 24
    • 0142045636 scopus 로고    scopus 로고
    • DNA microarray data and contextual analysis of correlation graphs
    • J. Rougemont and P. Hingamp, DNA microarray data and contextual analysis of correlation graphs. BMC Bioinformatics 4 (2003) 15.
    • (2003) BMC Bioinformatics , vol.4 , pp. 15
    • Rougemont, J.1    Hingamp, P.2
  • 25
    • 0000488788 scopus 로고
    • Network structure and minimum degree
    • S.B. Seidman, Network structure and minimum degree. Social Networks 5 (1983) 269-287.
    • (1983) Social Networks , vol.5 , pp. 269-287
    • Seidman, S.B.1
  • 26
    • 0001831117 scopus 로고
    • Mode analysis: Generalization of nearest neighbor which reduces chaining effects
    • Academic Press
    • D. Wishart, Mode analysis: generalization of nearest neighbor which reduces chaining effects, in Numerical taxonomy, Academic Press (1976) 282-311.
    • (1976) Numerical taxonomy , pp. 282-311
    • Wishart, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.