메뉴 건너뛰기




Volumn 40, Issue 2, 2008, Pages 566-604

Symmetry-breaking bifurcation in nonlinear schrödinger/gross- pitaevskii equations

Author keywords

Bound state; Gross Pitaevskii; Nonlinear schrodinger; Soliton

Indexed keywords

ANTISYMMETRIC MODES; ASYMMETRIC BRANCHES; BIFURCATION POINTS; BOUND STATE; DOUBLE WELLS; GROSS-PITAEVSKII; LINEAR POTENTIALS; MACROSCOPIC QUANTUM PHENOMENON; MATHEMATICAL MODELING; MIXED MODES; NON-LINEAR OPTICAL; NONLINEAR SCHRODINGER; OPTICAL POWER; PARTICLE NUMBERS; SYMMETRY-BREAKING; SYMMETRY-BREAKING BIFURCATIONS;

EID: 54249084092     PISSN: 00361410     EISSN: None     Source Type: Journal    
DOI: 10.1137/060678427     Document Type: Article
Times cited : (69)

References (35)
  • 1
    • 27144440797 scopus 로고    scopus 로고
    • Direct observation of tunneling and nonlinear self-trapping in a single bosonic Josephson junction
    • M. ALBIEZ, R. GATI, J. FOLLING, S. HUNSMANN, M. CRISTIANI, AND M. K. OBERTHALER, Direct observation of tunneling and nonlinear self-trapping in a single bosonic Josephson junction, Phys. Rev. Lett., 95 (2005), p. 010402.
    • (2005) Phys. Rev. Lett , vol.95 , pp. 010402
    • ALBIEZ, M.1    GATI, R.2    FOLLING, J.3    HUNSMANN, S.4    CRISTIANI, M.5    OBERTHALER, M.K.6
  • 2
    • 41349119783 scopus 로고    scopus 로고
    • Wannier functions analysis of the nonlinear Schrödinger equation with a periodic potential
    • G. L. ALFIMOV, P. G. KEVREKIDIS, V. V. KONOTOP, AND M. SALERNO, Wannier functions analysis of the nonlinear Schrödinger equation with a periodic potential, Phys. Rev. E, 66 (2002), p. 046608.
    • (2002) Phys. Rev. E , vol.66 , pp. 046608
    • ALFIMOV, G.L.1    KEVREKIDIS, P.G.2    KONOTOP, V.V.3    SALERNO, M.4
  • 5
    • 10244243814 scopus 로고    scopus 로고
    • Spectra of positive and negative energies in the linearized NLS problem
    • S. CUCCAGNA, D. PELINOVSKY, AND V. VOUGALTER, Spectra of positive and negative energies in the linearized NLS problem, Comm. Pure Appl, Math., 58 (2005), pp. 1-29.
    • (2005) Comm. Pure Appl, Math , vol.58 , pp. 1-29
    • CUCCAGNA, S.1    PELINOVSKY, D.2    VOUGALTER, V.3
  • 6
    • 1042290542 scopus 로고    scopus 로고
    • Singular instability of exact stationary solutions of the nonlocal Gross-Pitaevskii equation
    • B. DECONINCK AND J. NATHAN KUTZ, Singular instability of exact stationary solutions of the nonlocal Gross-Pitaevskii equation, Phys. Lett. A, 319 (2003), pp. 97-103.
    • (2003) Phys. Lett. A , vol.319 , pp. 97-103
    • DECONINCK, B.1    NATHAN KUTZ, J.2
  • 9
    • 84990623184 scopus 로고
    • Linearized instability for nonlinear Schrodinger and Klein-Gordon equations
    • M. G. GRILLAKIS, Linearized instability for nonlinear Schrodinger and Klein-Gordon equations, Comm. Pure Appl. Math., 41 (1988), pp. 747-774.
    • (1988) Comm. Pure Appl. Math , vol.41 , pp. 747-774
    • GRILLAKIS, M.G.1
  • 10
    • 0000468151 scopus 로고
    • Stability theory of solitary waves in the presence of symmetry I
    • M. G. GRILLAKIS. J. SHATAH, AND W. A. STRAUSS, Stability theory of solitary waves in the presence of symmetry I, J. Funct. Anal., 74 (1987), pp. 160-197.
    • (1987) J. Funct. Anal , vol.74 , pp. 160-197
    • GRILLAKIS, M.G.1    SHATAH, J.2    STRAUSS, W.A.3
  • 13
    • 0035132275 scopus 로고    scopus 로고
    • Chaos synchronization and spontaneous symmetry-breaking in symmetrically delay-coupled semiconductor lasers
    • T. HEIL, I. FISCHER, AND W. ELSÄSSER, Chaos synchronization and spontaneous symmetry-breaking in symmetrically delay-coupled semiconductor lasers, Phys. Rev. Lett., 86 (2001), pp. 795-798.
    • (2001) Phys. Rev. Lett , vol.86 , pp. 795-798
    • HEIL, T.1    FISCHER, I.2    ELSÄSSER, W.3
  • 14
    • 4344685967 scopus 로고    scopus 로고
    • Geometric analysis of bifurcation and symmetry breaking in a Gross-Pitaevskii equation
    • R. K. JACKSON AND M. I. WEINSTEIN, Geometric analysis of bifurcation and symmetry breaking in a Gross-Pitaevskii equation, J. Statist. Phys., 116 (2004), pp. 881-905.
    • (2004) J. Statist. Phys , vol.116 , pp. 881-905
    • JACKSON, R.K.1    WEINSTEIN, M.I.2
  • 15
    • 0007690410 scopus 로고
    • An instability mechanism for radially symmetric standing waves of a nonlinear Schrödinger equation
    • C. K. R. T. JONES, An instability mechanism for radially symmetric standing waves of a nonlinear Schrödinger equation, J. Differential Equations, 71 (1988), pp. 34-62.
    • (1988) J. Differential Equations , vol.71 , pp. 34-62
    • JONES, C.K.R.T.1
  • 16
    • 0035427177 scopus 로고    scopus 로고
    • Stability of waves in perturbed Hamiltonian systems
    • T. KAPITULA, Stability of waves in perturbed Hamiltonian systems, Phys. D, 156 (2001), pp. 186-200.
    • (2001) Phys. D , vol.156 , pp. 186-200
    • KAPITULA, T.1
  • 17
    • 26944495278 scopus 로고    scopus 로고
    • Bose-Einstein condensates in the presence of a magnetic trap and optical lattice: Two-mode approximation
    • T. KAPITULA AND P. KEVREKIDIS, Bose-Einstein condensates in the presence of a magnetic trap and optical lattice: Two-mode approximation, Nonlinearity, 18 (2005), pp. 2491-2512.
    • (2005) Nonlinearity , vol.18 , pp. 2491-2512
    • KAPITULA, T.1    KEVREKIDIS, P.2
  • 18
    • 34548046932 scopus 로고    scopus 로고
    • Three is a crowd: Solitary waves in photore fractive media with three potential wells
    • T. KAPITULA, P. G. KEVREKIDIS, AND Z. CHEN, Three is a crowd: Solitary waves in photore fractive media with three potential wells, SIAM J. Appl. Dyn. Syst., 5 (2006), pp. 598-633.
    • (2006) SIAM J. Appl. Dyn. Syst , vol.5 , pp. 598-633
    • KAPITULA, T.1    KEVREKIDIS, P.G.2    CHEN, Z.3
  • 19
    • 3342994344 scopus 로고    scopus 로고
    • Counting eigenvalues via the Krein signature in infinite-dimensional Hamiltonian systems
    • T. KAPITULA, P. G. KEVREKIDIS, AND B. SANDSTEDE, Counting eigenvalues via the Krein signature in infinite-dimensional Hamiltonian systems, Phys. D, 195 (2004), pp. 263-282.
    • (2004) Phys. D , vol.195 , pp. 263-282
    • KAPITULA, T.1    KEVREKIDIS, P.G.2    SANDSTEDE, B.3
  • 21
    • 34247120263 scopus 로고    scopus 로고
    • On the asymptotic stability of bound states in 2D cubic Schrödinger equation
    • E. KIRR AND A. ZARNESCU, On the asymptotic stability of bound states in 2D cubic Schrödinger equation, Comm. Math. Phys., 272 (2007), pp. 443-468.
    • (2007) Comm. Math. Phys , vol.272 , pp. 443-468
    • KIRR, E.1    ZARNESCU, A.2
  • 23
    • 0036992141 scopus 로고    scopus 로고
    • Bose-Einstein condensates in a one dimensional double square well: Analytical solutions of nonlinear Schrödinger equation
    • K. W. MAHMUD, J. N. KUTZ, AND W. P. REINHARDT, Bose-Einstein condensates in a one dimensional double square well: Analytical solutions of nonlinear Schrödinger equation, Phys. Rev. A, 66 (2002), p. 063607.
    • (2002) Phys. Rev. A , vol.66 , pp. 063607
    • MAHMUD, K.W.1    KUTZ, J.N.2    REINHARDT, W.P.3
  • 25
    • 0001322178 scopus 로고    scopus 로고
    • Invariant manifolds for a class of dispersive, Hamiltonian partial differential equations
    • C.-A. PILLET AND C. E. WAYNE, Invariant manifolds for a class of dispersive, Hamiltonian partial differential equations, J. Differential Equations, 141 (1997), pp. 310-326.
    • (1997) J. Differential Equations , vol.141 , pp. 310-326
    • PILLET, C.-A.1    WAYNE, C.E.2
  • 26
    • 0000173206 scopus 로고
    • On the bound states of the nonlinear Schrödinger equation with a linear potential
    • H. A. ROSE AND M. I. WEINSTEIN, On the bound states of the nonlinear Schrödinger equation with a linear potential, Phys. D, 30 (1988), pp. 207-218.
    • (1988) Phys. D , vol.30 , pp. 207-218
    • ROSE, H.A.1    WEINSTEIN, M.I.2
  • 27
    • 4444321157 scopus 로고    scopus 로고
    • Nonlinear time-dependent one-dimensional Schrödinger equation with double- well potential
    • A. SACCHETTI, Nonlinear time-dependent one-dimensional Schrödinger equation with double- well potential, SIAM J. Math. Anal., 35 (2003), pp. 1160-1176.
    • (2003) SIAM J. Math. Anal , vol.35 , pp. 1160-1176
    • SACCHETTI, A.1
  • 28
    • 0034257939 scopus 로고    scopus 로고
    • Spontaneous symmetry breaking turing-type pattern formation in a confined dictyostelium cell mass
    • S. SAWAI, Y. MAEDA, AND Y. SAWADA, Spontaneous symmetry breaking turing-type pattern formation in a confined dictyostelium cell mass, Phys. Rev. Lett., 85 2000), pp. 2212-2215.
    • (2000) Phys. Rev. Lett , vol.85 , pp. 2212-2215
    • SAWAI, S.1    MAEDA, Y.2    SAWADA, Y.3
  • 29
    • 12144269880 scopus 로고    scopus 로고
    • Selection of the ground state for nonlinear Schröoinger equations
    • A. SOFFER AND M. I. WEINSTEIN, Selection of the ground state for nonlinear Schröoinger equations, Rev. Math. Phys., 16 (2004), pp. 977-1071.
    • (2004) Rev. Math. Phys , vol.16 , pp. 977-1071
    • SOFFER, A.1    WEINSTEIN, M.I.2
  • 30
    • 28844490887 scopus 로고    scopus 로고
    • Theory of nonlinear dispersive waves and selection of the ground state
    • A. SOFFER AND M. I. WEINSTEIN, Theory of nonlinear dispersive waves and selection of the ground state, Phys. Rev. Lett., 95 (2005), p. 213905.
    • (2005) Phys. Rev. Lett , vol.95 , pp. 213905
    • SOFFER, A.1    WEINSTEIN, M.I.2
  • 31
    • 0001469796 scopus 로고    scopus 로고
    • Tilt, polarity, and spontaneous symmetry breaking in liquid crystals
    • A. G. VANAKARAS, D. J. FOTINOS, AND E. T. SAMULSKI, Tilt, polarity, and spontaneous symmetry breaking in liquid crystals, Phys. Rev. E, 57 (1998), pp. R4875-R4878.
    • (1998) Phys. Rev. E , vol.57
    • VANAKARAS, A.G.1    FOTINOS, D.J.2    SAMULSKI, E.T.3
  • 32
    • 0000686130 scopus 로고
    • Modulational stability of ground states of nonlinear Schrödinger equations
    • M. I. WEINSTEIN, Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal., 16 (1985), pp. 472-491.
    • (1985) SIAM J. Math. Anal , vol.16 , pp. 472-491
    • WEINSTEIN, M.I.1
  • 33
    • 84990553584 scopus 로고
    • Lyapunov stability of ground states of nonlinear dispersive evolution equations
    • M. I. WEINSTEIN, Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure Appl. Math., 39 (1986), pp. 51-68.
    • (1986) Comm. Pure Appl. Math , vol.39 , pp. 51-68
    • WEINSTEIN, M.I.1
  • 34
    • 4143088633 scopus 로고    scopus 로고
    • Spontaneous symmetry breaking in single and molecular quantum dots
    • C. YANNOULEAS AND U. LANDMAN, Spontaneous symmetry breaking in single and molecular quantum dots, Phys. Rev. Lett., 82 (1999), pp. 5325-5328.
    • (1999) Phys. Rev. Lett , vol.82 , pp. 5325-5328
    • YANNOULEAS, C.1    LANDMAN, U.2
  • 35
    • 34249902487 scopus 로고    scopus 로고
    • Perturbation expansion and Nth order Fermi golden rule of the nonlinear Schrödinger equations with potential
    • G. ZHOU, Perturbation expansion and Nth order Fermi golden rule of the nonlinear Schrödinger equations with potential, J. Math. Phys.., 48 (2007), p. 053509.
    • (2007) J. Math. Phys , vol.48 , pp. 053509
    • ZHOU, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.