메뉴 건너뛰기




Volumn 5, Issue 4, 2006, Pages 598-633

Three is a crowd: Solitary waves in photorefractive media with three potential wells

Author keywords

Hamiltonian systems; Lyapunov Schmidt reduction; Solitary waves; Stability

Indexed keywords

BIFURCATION (MATHEMATICS); CONVERGENCE OF NUMERICAL METHODS; HAMILTONIANS; NIOBIUM COMPOUNDS; NUMERICAL METHODS; PHOTOREACTIVITY; PHOTOREFRACTIVE MATERIALS;

EID: 34548046932     PISSN: None     EISSN: 15360040     Source Type: Journal    
DOI: 10.1137/05064076X     Document Type: Article
Times cited : (42)

References (49)
  • 1
    • 27144440797 scopus 로고    scopus 로고
    • Direct observation of tunneling and nonlinear self-trapping in a single bosonic Josephson junction
    • paper 010402
    • M. Albiez, R. Gati, J. Fölling, S. Hunsmann, T. Cristiani, and M. K. Oberthaler, Direct observation of tunneling and nonlinear self-trapping in a single bosonic Josephson junction, Phys. Rev. Lett., 95 (2005), paper 010402.
    • (2005) Phys. Rev. Lett. , vol.95
    • Albiez, M.1    Gati, R.2    Fölling, J.3    Hunsmann, S.4    Cristiani, T.5    Oberthaler, M.K.6
  • 2
    • 2942616545 scopus 로고    scopus 로고
    • On classification of intrinsic localized modes for the discrete nonlinear Schrödinger equation
    • G. L. Alfimov, V. A. Brazhnyi, and V. V. Konotop, On classification of intrinsic localized modes for the discrete nonlinear Schrödinger equation, Phys. D, 194 (2004), pp. 127–150.
    • (2004) Phys. D , vol.194 , pp. 127-150
    • Alfimov, G.L.1    Brazhnyi, V.A.2    Konotop, V.V.3
  • 4
    • 14344256106 scopus 로고    scopus 로고
    • Theory of nonlinear matter waves in optical lattices
    • V. A. Brazhnyi and V. V. Konotop, Theory of nonlinear matter waves in optical lattices, Mod. Phys. Lett. B, 18 (2004), pp. 627–651.
    • (2004) Mod. Phys. Lett. B , vol.18 , pp. 627-651
    • Brazhnyi, V.A.1    Konotop, V.V.2
  • 7
    • 0037113266 scopus 로고    scopus 로고
    • Spatial soliton pixels from partially coherent light
    • Z. Chen and K. McCarthy, Spatial soliton pixels from partially coherent light, Opt. Lett., 27 (2002), pp. 2019–2021.
    • (2002) Opt. Lett. , vol.27 , pp. 2019-2021
    • Chen, Z.1    McCarthy, K.2
  • 8
    • 3142737914 scopus 로고    scopus 로고
    • Observation of two-dimensional lattice vector solitons
    • Z. Chen, A. Bezryadina, I. Makasyuk, and J. Yang, Observation of two-dimensional lattice vector solitons, Opt. Lett., 29 (2004), pp. 1656–1658.
    • (2004) Opt. Lett. , vol.29 , pp. 1656-1658
    • Chen, Z.1    Bezryadina, A.2    Makasyuk, I.3    Yang, J.4
  • 9
    • 2542480303 scopus 로고    scopus 로고
    • Anisotropic enhancement of discrete diffraction and formation of two-dimensional discrete-soliton trains
    • paper 143902
    • Z. Chen, H. Martin, E. D. Eugenieva, J. Xu, and A. Bezryadina, Anisotropic enhancement of discrete diffraction and formation of two-dimensional discrete-soliton trains, Phys. Rev. Lett., 92 (2004), paper 143902.
    • (2004) Phys. Rev. Lett. , vol.92
    • Chen, Z.1    Martin, H.2    Eugenieva, E.D.3    Xu, J.4    Bezryadina, A.5
  • 10
    • 0042968737 scopus 로고    scopus 로고
    • Discretizing light behavior in linear and nonlinear waveguide lattices
    • D. N. Christodoulides, F. Lederer, and Y. Silberberg, Discretizing light behavior in linear and nonlinear waveguide lattices, Nature, 424 (2003), pp. 817–823.
    • (2003) Nature , vol.424 , pp. 817-823
    • Christodoulides, D.N.1    Lederer, F.2    Silberberg, Y.3
  • 12
    • 46549091660 scopus 로고
    • The discrete self-trapping equation
    • J. C. Eilbeck, P. S. Lomdahl, and A. C. Scott, The discrete self-trapping equation, Phys. D, 16 (1985), pp. 318–338.
    • (1985) Phys. D , vol.16 , pp. 318-338
    • Eilbeck, J.C.1    Lomdahl, P.S.2    Scott, A.C.3
  • 15
    • 0037434990 scopus 로고    scopus 로고
    • Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices
    • J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices, Nature, 422 (2003), pp. 147–150.
    • (2003) Nature , vol.422 , pp. 147-150
    • Fleischer, J.W.1    Segev, M.2    Efremidis, N.K.3    Christodoulides, D.N.4
  • 17
    • 0038203431 scopus 로고    scopus 로고
    • Chaotic behavior, collective modes and self-trapping in the dynamics of three coupled Bose-Einstein condensates
    • paper 046227
    • R. Franzosi and V. Penna, Chaotic behavior, collective modes and self-trapping in the dynamics of three coupled Bose-Einstein condensates, Phys. Rev. E, 67 (2003), paper 046227.
    • (2003) Phys. Rev. E , vol.67
    • Franzosi, R.1    Penna, V.2
  • 20
    • 4344685967 scopus 로고    scopus 로고
    • Geometric analysis of bifurcation and symmetry breaking in a Gross-Pitaevskii equation
    • R. K. Jackson and M. I. Weinstein, Geometric analysis of bifurcation and symmetry breaking in a Gross-Pitaevskii equation, J. Statist. Phys., 116 (2004), pp. 881–905.
    • (2004) J. Statist. Phys. , vol.116 , pp. 881-905
    • Jackson, R.K.1    Weinstein, M.I.2
  • 22
    • 1342329488 scopus 로고    scopus 로고
    • Hamiltonian Hopf bifurcations in the discrete nonlinear Schrödinger trimer: Oscillatory instabilities, quasi-periodic solutions and a “new” type of self-trapping transition
    • M. Johansson, Hamiltonian Hopf bifurcations in the discrete nonlinear Schrödinger trimer: Oscillatory instabilities, quasi-periodic solutions and a “new” type of self-trapping transition, J. Phys. A, 37 (2004), pp. 2201–2222.
    • (2004) J. Phys. A , vol.37 , pp. 2201-2222
    • Johansson, M.1
  • 23
    • 26944493586 scopus 로고    scopus 로고
    • Bose-Einstein condensates in the presence of a magnetic trap and an optical lattice
    • paper 037114
    • T. Kapitula and P. G. Kevrekidis, Bose-Einstein condensates in the presence of a magnetic trap and an optical lattice, Chaos, 15 (2005), paper 037114.
    • (2005) Chaos , vol.15
    • Kapitula, T.1    Kevrekidis, P.G.2
  • 24
    • 26944495278 scopus 로고    scopus 로고
    • Bose-Einstein condensates in the presence of a magnetic trap and optical lattice: Two-mode approximation
    • T. Kapitula and P. G. Kevrekidis, Bose-Einstein condensates in the presence of a magnetic trap and optical lattice: Two-mode approximation, Nonlinearity, 18 (2005), pp. 2491–2512.
    • (2005) Nonlinearity , vol.18 , pp. 2491-2512
    • Kapitula, T.1    Kevrekidis, P.G.2
  • 25
    • 0035276613 scopus 로고    scopus 로고
    • Stability of multiple pulses in discrete systems
    • paper 036602
    • T. Kapitula, P. G. Kevrekidis, and B. A. Malomed, Stability of multiple pulses in discrete systems, Phys. Rev. E, 63 (2001), paper 036602.
    • (2001) Phys. Rev. E , vol.63
    • Kapitula, T.1    Kevrekidis, P.G.2    Malomed, B.A.3
  • 26
    • 3342994344 scopus 로고    scopus 로고
    • Counting eigenvalues via the Krein signature in infinite-dimensional Hamiltonian systems
    • T. Kapitula, P. Kevrekidis, and B. Sandstede, Counting eigenvalues via the Krein signature in infinite-dimensional Hamiltonian systems, Phys. D, 195 (2004), pp. 263–282.
    • (2004) Phys. D , vol.195 , pp. 263-282
    • Kapitula, T.1    Kevrekidis, P.2    Sandstede, B.3
  • 27
    • 13244287967 scopus 로고    scopus 로고
    • Addendum: Counting eigenvalues via the Krein signature in infinite-dimensional Hamiltonian systems
    • T. Kapitula, P. Kevrekidis, and B. Sandstede, Addendum: Counting eigenvalues via the Krein signature in infinite-dimensional Hamiltonian systems, Phys. D, 201 (2005), pp. 199–201.
    • (2005) Phys. D , vol.201 , pp. 199-201
    • Kapitula, T.1    Kevrekidis, P.2    Sandstede, B.3
  • 29
    • 3543084321 scopus 로고    scopus 로고
    • Pattern forming dynamical instabilities of Bose-Einstein condensates
    • P. G. Kevrekidis and D. J. Frantzeskakis, Pattern forming dynamical instabilities of Bose-Einstein condensates, Mod. Phys. Lett. B, 18 (2004), pp. 173–202.
    • (2004) Mod. Phys. Lett. B , vol.18 , pp. 173-202
    • Kevrekidis, P.G.1    Frantzeskakis, D.J.2
  • 33
    • 11544364689 scopus 로고    scopus 로고
    • Structural stability of non-ground state traveling waves of coupled nonlinear Schrödinger equations
    • Y. Li and K. Promislow, Structural stability of non-ground state traveling waves of coupled nonlinear Schrödinger equations, Phys. D, 124 (1998), pp. 137–165.
    • (1998) Phys. D , vol.124 , pp. 137-165
    • Li, Y.1    Promislow, K.2
  • 34
    • 0036992141 scopus 로고    scopus 로고
    • Bose-Einstein condensates in a one-dimensional double square well: Analytical solutions of the nonlinear Schrödinger equation
    • paper 063607
    • K. W. Mahmud, J. N. Kutz, and W. P. Reinhardt, Bose-Einstein condensates in a one-dimensional double square well: Analytical solutions of the nonlinear Schrödinger equation, Phys. Rev. A, 66 (2002), paper 063607.
    • (2002) Phys. Rev. A , vol.66
    • Mahmud, K.W.1    Kutz, J.N.2    Reinhardt, W.P.3
  • 35
    • 2342575501 scopus 로고    scopus 로고
    • Discrete solitons and soliton-induced dislocations in partially coherent photonic lattices
    • paper 123902
    • H. Martin, E. D. Eugenieva, Z. Chen, and D. N. Christodoulides, Discrete solitons and soliton-induced dislocations in partially coherent photonic lattices, Phys. Rev. Lett., 92 (2004), paper 123902.
    • (2004) Phys. Rev. Lett. , vol.92
    • Martin, H.1    Eugenieva, E.D.2    Chen, Z.3    Christodoulides, D.N.4
  • 36
    • 0036467631 scopus 로고    scopus 로고
    • Standing wave instabilities in a chain of nonlinear coupled oscillators
    • A. Morgante, M. Johansson, G. Kopidakis, and S. Aubry, Standing wave instabilities in a chain of nonlinear coupled oscillators, Phys. D, 162 (2002), pp. 53–94.
    • (2002) Phys. D , vol.162 , pp. 53-94
    • Morgante, A.1    Johansson, M.2    Kopidakis, G.3    Aubry, S.4
  • 37
    • 33644584452 scopus 로고    scopus 로고
    • Bose-Einstein condensates in optical lattices
    • O. Morsch and M. Oberthaler, Bose-Einstein condensates in optical lattices, Rev. Mod. Phys., 78 (2006), pp. 179–215.
    • (2006) Rev. Mod. Phys. , vol.78 , pp. 179-215
    • Morsch, O.1    Oberthaler, M.2
  • 40
    • 17144415970 scopus 로고    scopus 로고
    • Inertia law for spectral stability of solitary waves in coupled nonlinear Schrödinger equations
    • D. Pelinovsky, Inertia law for spectral stability of solitary waves in coupled nonlinear Schrödinger equations, Proc. Royal Soc. London A, 461 (2005), pp. 783–812.
    • (2005) Proc. Royal Soc. London A , vol.461 , pp. 783-812
    • Pelinovsky, D.1
  • 41
    • 20044362047 scopus 로고    scopus 로고
    • Instabilities of multihump vector solitons in coupled nonlinear Schrödinger equations
    • D. Pelinovsky and J. Yang, Instabilities of multihump vector solitons in coupled nonlinear Schrödinger equations, Stud. Appl. Math., 115 (2005), pp. 109–137.
    • (2005) Stud. Appl. Math. , vol.115 , pp. 109-137
    • Pelinovsky, D.1    Yang, J.2
  • 42
    • 27744488045 scopus 로고    scopus 로고
    • Stability of discrete solitons in nonlinear Schrödinger lattices
    • D. Pelinovsky, P. Kevrekidis, and D. Frantzeskakis, Stability of discrete solitons in nonlinear Schrödinger lattices, Phys. D, 212 (2005), pp. 1–19.
    • (2005) Phys. D , vol.212 , pp. 1-19
    • Pelinovsky, D.1    Kevrekidis, P.2    Frantzeskakis, D.3
  • 43
    • 27744573980 scopus 로고    scopus 로고
    • Persistence and stability of discrete vortices in nonlinear Schrödinger lattices
    • D. Pelinovsky, P. Kevrekidis, and D. Frantzeskakis, Persistence and stability of discrete vortices in nonlinear Schrödinger lattices, Phys. D, 212 (2005), pp. 20–53.
    • (2005) Phys. D , vol.212 , pp. 20-53
    • Pelinovsky, D.1    Kevrekidis, P.2    Frantzeskakis, D.3
  • 44
    • 4444250477 scopus 로고    scopus 로고
    • Nonlinear time-dependent Schrödinger equations: The Gross-Pitaevskii equation with double-well potential
    • A. Sacchetti, Nonlinear time-dependent Schrödinger equations: The Gross-Pitaevskii equation with double-well potential, J. Evol. Equ., 4 (2004), pp. 345–369.
    • (2004) J. Evol. Equ. , vol.4 , pp. 345-369
    • Sacchetti, A.1
  • 45
    • 4444321157 scopus 로고    scopus 로고
    • Nonlinear time-dependent one-dimensional Schrödinger equation with double-well potential
    • A. Sacchetti, Nonlinear time-dependent one-dimensional Schrödinger equation with double-well potential, SIAM J. Math. Anal., 35 (2004), pp. 1160–1176.
    • (2004) SIAM J. Math. Anal. , vol.35 , pp. 1160-1176
    • Sacchetti, A.1
  • 46
    • 21944451412 scopus 로고    scopus 로고
    • Stability of multiple-pulse solutions
    • B. Sandstede, Stability of multiple-pulse solutions, Trans. Amer. Math. Soc., 350 (1998), pp. 429–472.
    • (1998) Trans. Amer. Math. Soc. , vol.350 , pp. 429-472
    • Sandstede, B.1
  • 48
    • 0033130275 scopus 로고    scopus 로고
    • Excitation thresholds for nonlinear localized modes on lattices
    • M. Weinstein, Excitation thresholds for nonlinear localized modes on lattices, Nonlinearity, 12 (1999), pp. 673–691.
    • (1999) Nonlinearity , vol.12 , pp. 673-691
    • Weinstein, M.1
  • 49
    • 3042574268 scopus 로고    scopus 로고
    • Stability of vortex solitons in a photorefractive optical lattice
    • J. Yang, Stability of vortex solitons in a photorefractive optical lattice, New J. Phys., 6 (2004), p. 47.
    • (2004) New J. Phys. , vol.6 , pp. 47
    • Yang, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.