메뉴 건너뛰기




Volumn 205, Issue 1, 2008, Pages 281-290

Wendel's and Gautschi's inequalities: Refinements, extensions, and a class of logarithmically completely monotonic functions

Author keywords

Elementary function involving the exponential function; Extension; Inequality; Logarithmically completely monotonic function; Monotonicity; Polygamma function; Psi function; Ratio of gamma functions; Refinement; Sharpening; Sufficient and necessary condition

Indexed keywords

THEOREM PROVING;

EID: 54049135100     PISSN: 00963003     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.amc.2008.07.005     Document Type: Article
Times cited : (30)

References (53)
  • 2
    • 33646870267 scopus 로고
    • Some properties of a class of logarithmically completely monotonic functions
    • Atanassov R.D., and Tsoukrovski U.V. Some properties of a class of logarithmically completely monotonic functions. C.R. Acad. Bulgare Sci. 41 2 (1988) 21-23
    • (1988) C.R. Acad. Bulgare Sci. , vol.41 , Issue.2 , pp. 21-23
    • Atanassov, R.D.1    Tsoukrovski, U.V.2
  • 3
    • 37249014561 scopus 로고    scopus 로고
    • Some gamma function inequalities
    • Art. 5
    • Batir N. Some gamma function inequalities. RGMIA Res. Rep. Coll. 9 3 (2006). http://www.staff.vu.edu.au/rgmia/v9n3.asp Art. 5
    • (2006) RGMIA Res. Rep. Coll. , vol.9 , Issue.3
    • Batir, N.1
  • 4
    • 33646380663 scopus 로고    scopus 로고
    • Integral representation of some functions related to the gamma function
    • Berg C. Integral representation of some functions related to the gamma function. Mediter. J. Math. 1 4 (2004) 433-439
    • (2004) Mediter. J. Math. , vol.1 , Issue.4 , pp. 433-439
    • Berg, C.1
  • 5
    • 84966216618 scopus 로고
    • On gamma function inequalities
    • Bustoz J., and Ismail M.E.H. On gamma function inequalities. Math. Comp. 47 (1986) 659-667
    • (1986) Math. Comp. , vol.47 , pp. 659-667
    • Bustoz, J.1    Ismail, M.E.H.2
  • 6
    • 27844459163 scopus 로고    scopus 로고
    • Monotonicity and convexity for the gamma function
    • Art. 100
    • Chen Ch.-P. Monotonicity and convexity for the gamma function. J. Inequal. Pure Appl. Math. 6 4 (2005). http://jipam.vu.edu.au/article.php?sid=574 Art. 100
    • (2005) J. Inequal. Pure Appl. Math. , vol.6 , Issue.4
    • Chen, Ch.-P.1
  • 7
    • 33646338597 scopus 로고    scopus 로고
    • Logarithmically completely monotonic functions relating to the gamma function
    • Chen Ch.-P., and Qi F. Logarithmically completely monotonic functions relating to the gamma function. J. Math. Anal. Appl. 321 1 (2006) 405-411
    • (2006) J. Math. Anal. Appl. , vol.321 , Issue.1 , pp. 405-411
    • Chen, Ch.-P.1    Qi, F.2
  • 8
    • 60149086015 scopus 로고    scopus 로고
    • Logarithmically complete monotonicity properties for the gamma functions
    • Art. 8
    • Chen Ch.-P., and Qi F. Logarithmically complete monotonicity properties for the gamma functions. Austral. J. Math. Anal. Appl. 2 2 (2005). http://ajmaa.org/cgi-bin/paper.pl?string=v2n2/V2I2P8.tex Art. 8
    • (2005) Austral. J. Math. Anal. Appl. , vol.2 , Issue.2
    • Chen, Ch.-P.1    Qi, F.2
  • 9
    • 35648954779 scopus 로고    scopus 로고
    • Logarithmically completely monotonic ratios of mean values and an application
    • Chen Ch.-P., and Qi F. Logarithmically completely monotonic ratios of mean values and an application. Glob. J. Math. Math. Sci. 1 1 (2005) 71-76
    • (2005) Glob. J. Math. Math. Sci. , vol.1 , Issue.1 , pp. 71-76
    • Chen, Ch.-P.1    Qi, F.2
  • 10
    • 54049089043 scopus 로고    scopus 로고
    • Logarithmically completely monotonic ratios of mean values and an application
    • Art. 18
    • Chen Ch.-P., and Qi F. Logarithmically completely monotonic ratios of mean values and an application. RGMIA Res. Rep. Coll. 8 1 (2005) 147-152. http://www.staff.vu.edu.au/rgmia/v8n1.asp Art. 18
    • (2005) RGMIA Res. Rep. Coll. , vol.8 , Issue.1 , pp. 147-152
    • Chen, Ch.-P.1    Qi, F.2
  • 12
    • 85171841264 scopus 로고
    • Some elementary inequalities relating to the gamma and incomplete gamma function
    • Gautschi W. Some elementary inequalities relating to the gamma and incomplete gamma function. J. Math. Phys. 38 1 (1959) 77-81
    • (1959) J. Math. Phys. , vol.38 , Issue.1 , pp. 77-81
    • Gautschi, W.1
  • 13
    • 33645771401 scopus 로고    scopus 로고
    • Completely monotonic functions involving the gamma and q-gamma functions
    • Grinshpan A.Z., and Ismail M.E.H. Completely monotonic functions involving the gamma and q-gamma functions. Proc. Am. Math. Soc. 134 (2006) 1153-1160
    • (2006) Proc. Am. Math. Soc. , vol.134 , pp. 1153-1160
    • Grinshpan, A.Z.1    Ismail, M.E.H.2
  • 14
    • 33645140646 scopus 로고
    • On infinitely divisible matrices, kernels and functions
    • Horn R.A. On infinitely divisible matrices, kernels and functions. Z. Wahrscheinlichkeitstheorie und Verw. Geb 8 (1967) 219-230
    • (1967) Z. Wahrscheinlichkeitstheorie und Verw. Geb , vol.8 , pp. 219-230
    • Horn, R.A.1
  • 15
    • 84966228652 scopus 로고
    • Some extensions of W. Gautschi's inequalities for the gamma function
    • Kershaw D. Some extensions of W. Gautschi's inequalities for the gamma function. Math. Comp. 41 164 (1983) 607-611
    • (1983) Math. Comp. , vol.41 , Issue.164 , pp. 607-611
    • Kershaw, D.1
  • 16
    • 84966209797 scopus 로고
    • Further inequalities for the gamma function
    • Laforgia A. Further inequalities for the gamma function. Math. Comp. 42 166 (1984) 597-600
    • (1984) Math. Comp. , vol.42 , Issue.166 , pp. 597-600
    • Laforgia, A.1
  • 17
    • 37249001973 scopus 로고    scopus 로고
    • Logarithmically complete monotonicity and Schur-convexity for some ratios of gamma functions
    • Li A.-J., Zhao W.-Zh., and Chen Ch.-P. Logarithmically complete monotonicity and Schur-convexity for some ratios of gamma functions. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 17 (2006) 88-92
    • (2006) Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. , vol.17 , pp. 88-92
    • Li, A.-J.1    Zhao, W.-Zh.2    Chen, Ch.-P.3
  • 18
    • 0010104488 scopus 로고    scopus 로고
    • Conditions for convexity of a derivative and some applications to the gamma function
    • Merkle M. Conditions for convexity of a derivative and some applications to the gamma function. Aequationes Math. 55 (1998) 273-280
    • (1998) Aequationes Math. , vol.55 , pp. 273-280
    • Merkle, M.1
  • 19
    • 58149354848 scopus 로고    scopus 로고
    • F. Qi, A class of logarithmically completely monotonic functions and application to the best bounds in the second Gautschi-Kershaw's inequality, J. Comput. Appl. Math. (2009), in press, doi:10.1016/j.cam.2008.05.030
    • F. Qi, A class of logarithmically completely monotonic functions and application to the best bounds in the second Gautschi-Kershaw's inequality, J. Comput. Appl. Math. (2009), in press, doi:10.1016/j.cam.2008.05.030
  • 20
    • 47849085349 scopus 로고    scopus 로고
    • A class of logarithmically completely monotonic functions and application to the best bounds in the second Gautschi-Kershaw's inequality
    • Art. 11
    • Qi F. A class of logarithmically completely monotonic functions and application to the best bounds in the second Gautschi-Kershaw's inequality. RGMIA Res. Rep. Coll. 9 4 (2006). http://www.staff.vu.edu.au/rgmia/v9n4.asp Art. 11
    • (2006) RGMIA Res. Rep. Coll. , vol.9 , Issue.4
    • Qi, F.1
  • 21
    • 34047143717 scopus 로고    scopus 로고
    • A class of logarithmically completely monotonic functions and the best bounds in the first Kershaw's double inequality
    • Qi F. A class of logarithmically completely monotonic functions and the best bounds in the first Kershaw's double inequality. J. Comput. Appl. Math. 206 2 (2007) 1007-1014
    • (2007) J. Comput. Appl. Math. , vol.206 , Issue.2 , pp. 1007-1014
    • Qi, F.1
  • 22
    • 36348957497 scopus 로고    scopus 로고
    • A completely monotonic function involving divided difference of psi function and an equivalent inequality involving sum
    • Qi F. A completely monotonic function involving divided difference of psi function and an equivalent inequality involving sum. ANZIAM J. 48 4 (2007) 523-532
    • (2007) ANZIAM J. , vol.48 , Issue.4 , pp. 523-532
    • Qi, F.1
  • 23
    • 34047144395 scopus 로고    scopus 로고
    • A completely monotonic function involving divided differences of psi and polygamma functions and an application
    • Art. 8
    • Qi F. A completely monotonic function involving divided differences of psi and polygamma functions and an application. RGMIA Res. Rep. Coll. 9 4 (2006). http://www.staff.vu.edu.au/rgmia/v9n4.asp Art. 8
    • (2006) RGMIA Res. Rep. Coll. , vol.9 , Issue.4
    • Qi, F.1
  • 24
    • 54049131816 scopus 로고    scopus 로고
    • A double inequality for divided differences and some identities of psi and polygamma functions
    • Art. 6
    • Qi F. A double inequality for divided differences and some identities of psi and polygamma functions. RGMIA Res. Rep. Coll. 10 3 (2007). http://www.staff.vu.edu.au/rgmia/v10n3.asp Art. 6
    • (2007) RGMIA Res. Rep. Coll. , vol.10 , Issue.3
    • Qi, F.1
  • 25
    • 39049173057 scopus 로고    scopus 로고
    • F. Qi, A new lower bound in the second Kershaw's double inequality, J. Comput. Appl. Math. in press. http://dx.doi.org/10.1016/j.cam.2007.03.016
    • F. Qi, A new lower bound in the second Kershaw's double inequality, J. Comput. Appl. Math. in press. http://dx.doi.org/10.1016/j.cam.2007.03.016
  • 26
    • 47849114054 scopus 로고    scopus 로고
    • A new lower bound in the second Kershaw's double inequality
    • Art. 9
    • Qi F. A new lower bound in the second Kershaw's double inequality. RGMIA Res. Rep. Coll. 10 1 (2007). http://www.staff.vu.edu.au/rgmia/v10n1.asp Art. 9
    • (2007) RGMIA Res. Rep. Coll. , vol.10 , Issue.1
    • Qi, F.1
  • 27
    • 36348942775 scopus 로고    scopus 로고
    • Certain logarithmically N-alternating monotonic functions involving gamma and q-gamma functions
    • Qi F. Certain logarithmically N-alternating monotonic functions involving gamma and q-gamma functions. Nonlinear Funct. Anal. Appl. 12 4 (2007) 675-685
    • (2007) Nonlinear Funct. Anal. Appl. , vol.12 , Issue.4 , pp. 675-685
    • Qi, F.1
  • 28
    • 34249780598 scopus 로고    scopus 로고
    • Certain logarithmically N-alternating monotonic functions involving gamma and q-gamma functions
    • Art. 5
    • Qi F. Certain logarithmically N-alternating monotonic functions involving gamma and q-gamma functions. RGMIA Res. Rep. Coll. 8 3 (2005) 413-422. http://www.staff.vu.edu.au/rgmia/v8n3.asp Art. 5
    • (2005) RGMIA Res. Rep. Coll. , vol.8 , Issue.3 , pp. 413-422
    • Qi, F.1
  • 29
    • 34249808898 scopus 로고    scopus 로고
    • Monotonicity and logarithmic convexity for a class of elementary functions involving the exponential function
    • Art. 3
    • Qi F. Monotonicity and logarithmic convexity for a class of elementary functions involving the exponential function. RGMIA Res. Rep. Coll. 9 3 (2006). http://www.staff.vu.edu.au/rgmia/v9n3.asp Art. 3
    • (2006) RGMIA Res. Rep. Coll. , vol.9 , Issue.3
    • Qi, F.1
  • 30
    • 0036001642 scopus 로고    scopus 로고
    • Monotonicity results and inequalities for the gamma and incomplete gamma functions
    • Qi F. Monotonicity results and inequalities for the gamma and incomplete gamma functions. Math. Inequal. Appl. 5 1 (2002) 61-67
    • (2002) Math. Inequal. Appl. , vol.5 , Issue.1 , pp. 61-67
    • Qi, F.1
  • 31
    • 3442875981 scopus 로고    scopus 로고
    • Monotonicity results and inequalities for the gamma and incomplete gamma functions
    • Art. 7
    • Qi F. Monotonicity results and inequalities for the gamma and incomplete gamma functions. RGMIA Res. Rep. Coll. 2 7 (1999) 1027-1034. http://www.staff.vu.edu.au/rgmia/v2n7.asp Art. 7
    • (1999) RGMIA Res. Rep. Coll. , vol.2 , Issue.7 , pp. 1027-1034
    • Qi, F.1
  • 32
    • 34047144395 scopus 로고    scopus 로고
    • The best bounds in Kershaw's inequality and two completely monotonic functions
    • Art. 2
    • Qi F. The best bounds in Kershaw's inequality and two completely monotonic functions. RGMIA Res. Rep. Coll. 9 4 (2006). http://www.staff.vu.edu.au/rgmia/v9n4.asp Art. 2
    • (2006) RGMIA Res. Rep. Coll. , vol.9 , Issue.4
    • Qi, F.1
  • 33
    • 34547224723 scopus 로고    scopus 로고
    • Three classes of logarithmically completely monotonic functions involving gamma and psi functions
    • Qi F. Three classes of logarithmically completely monotonic functions involving gamma and psi functions. Integral Trans. Spec. Funct. 18 7 (2007) 503-509
    • (2007) Integral Trans. Spec. Funct. , vol.18 , Issue.7 , pp. 503-509
    • Qi, F.1
  • 34
    • 54049156916 scopus 로고    scopus 로고
    • Three classes of logarithmically completely monotonic functions involving gamma and psi functions
    • Art. 6
    • Qi F. Three classes of logarithmically completely monotonic functions involving gamma and psi functions. RGMIA Res. Rep. Coll. 9 Suppl. (2006). http://www.staff.vu.edu.au/rgmia/v9(E).asp Art. 6
    • (2006) RGMIA Res. Rep. Coll. , vol.9 , Issue.SUPPL
    • Qi, F.1
  • 35
    • 34249823428 scopus 로고    scopus 로고
    • Three-log-convexity for a class of elementary functions involving exponential function
    • Qi F. Three-log-convexity for a class of elementary functions involving exponential function. J. Math. Anal. Approx. Theory 1 2 (2006) 100-103
    • (2006) J. Math. Anal. Approx. Theory , vol.1 , Issue.2 , pp. 100-103
    • Qi, F.1
  • 36
    • 34249800432 scopus 로고    scopus 로고
    • Four logarithmically completely monotonic functions involving gamma function and originating from problems of traffic flow
    • Art 9
    • Qi F., Cao J., and Niu D.-W. Four logarithmically completely monotonic functions involving gamma function and originating from problems of traffic flow. RGMIA Res. Rep. Coll. 9 3 (2006). http://www.staff.vu.edu.au/rgmia/v9n3.asp Art 9
    • (2006) RGMIA Res. Rep. Coll. , vol.9 , Issue.3
    • Qi, F.1    Cao, J.2    Niu, D.-W.3
  • 37
    • 3442891734 scopus 로고    scopus 로고
    • A complete monotonicity property of the gamma function
    • Qi F., and Chen Ch.-P. A complete monotonicity property of the gamma function. J. Math. Anal. Appl. 296 2 (2004) 603-607
    • (2004) J. Math. Anal. Appl. , vol.296 , Issue.2 , pp. 603-607
    • Qi, F.1    Chen, Ch.-P.2
  • 38
    • 34249093693 scopus 로고    scopus 로고
    • Logarithmically completely monotonic functions concerning gamma and digamma functions
    • Qi F., Chen Sh.-X., and Cheung W.-S. Logarithmically completely monotonic functions concerning gamma and digamma functions. Integral Transforms Spec. Funct. 18 6 (2007) 435-443
    • (2007) Integral Transforms Spec. Funct. , vol.18 , Issue.6 , pp. 435-443
    • Qi, F.1    Chen, Sh.-X.2    Cheung, W.-S.3
  • 39
    • 37249088817 scopus 로고    scopus 로고
    • A class of logarithmically completely monotonic functions and the best bounds in the second Kershaw's double inequality
    • Qi F., and Guo B.-N. A class of logarithmically completely monotonic functions and the best bounds in the second Kershaw's double inequality. J. Comput. Appl. Math. 212 2 (2008) 444-456. http://dx.doi.org/10.1016/j.cam.2006.12.022
    • (2008) J. Comput. Appl. Math. , vol.212 , Issue.2 , pp. 444-456
    • Qi, F.1    Guo, B.-N.2
  • 40
    • 47849114054 scopus 로고    scopus 로고
    • A class of logarithmically completely monotonic functions and the best bounds in the second Kershaw's double inequality
    • Art. 5
    • Qi F., and Guo B.-N. A class of logarithmically completely monotonic functions and the best bounds in the second Kershaw's double inequality. RGMIA Res. Rep. Coll. 10 2 (2007). http://www.staff.vu.edu.au/rgmia/v10n2.asp Art. 5
    • (2007) RGMIA Res. Rep. Coll. , vol.10 , Issue.2
    • Qi, F.1    Guo, B.-N.2
  • 41
    • 33645766365 scopus 로고    scopus 로고
    • Complete monotonicities of functions involving the gamma and digamma functions
    • Art. 8
    • Qi F., and Guo B.-N. Complete monotonicities of functions involving the gamma and digamma functions. RGMIA Res. Rep. Coll. 7 1 (2004) 63-72. http://www.staff.vu.edu.au/rgmia/v7n1.asp Art. 8
    • (2004) RGMIA Res. Rep. Coll. , vol.7 , Issue.1 , pp. 63-72
    • Qi, F.1    Guo, B.-N.2
  • 42
    • 33645778397 scopus 로고    scopus 로고
    • Some completely monotonic functions involving the gamma and polygamma functions
    • Art. 5
    • Qi F., Guo B.-N., and Chen Ch.-P. Some completely monotonic functions involving the gamma and polygamma functions. RGMIA Res. Rep. Coll. 7 1 (2004) 31-36. http://www.staff.vu.edu.au/rgmia/v7n1.asp Art. 5
    • (2004) RGMIA Res. Rep. Coll. , vol.7 , Issue.1 , pp. 31-36
    • Qi, F.1    Guo, B.-N.2    Chen, Ch.-P.3
  • 43
    • 33645814909 scopus 로고    scopus 로고
    • Some completely monotonic functions involving the gamma and polygamma functions
    • Qi F., Guo B.-N., and Chen Ch.-P. Some completely monotonic functions involving the gamma and polygamma functions. J. Austral. Math. Soc. 80 (2006) 81-88
    • (2006) J. Austral. Math. Soc. , vol.80 , pp. 81-88
    • Qi, F.1    Guo, B.-N.2    Chen, Ch.-P.3
  • 44
    • 33747056370 scopus 로고    scopus 로고
    • The best bounds in Gautschi-Kershaw inequalities
    • Qi F., Guo B.-N., and Chen Ch.-P. The best bounds in Gautschi-Kershaw inequalities. Math. Inequal. Appl. 9 3 (2006) 427-436
    • (2006) Math. Inequal. Appl. , vol.9 , Issue.3 , pp. 427-436
    • Qi, F.1    Guo, B.-N.2    Chen, Ch.-P.3
  • 45
    • 47849122739 scopus 로고    scopus 로고
    • A new upper bound in the second Kershaw's double inequality and its generalizations
    • Qi F., Guo S., and Chen Sh.-X. A new upper bound in the second Kershaw's double inequality and its generalizations. J. Comput. Appl. Math. 220 1-2 (2008) 111-118. http://dx.doi.org/10.1016/j.cam.2007.07.037
    • (2008) J. Comput. Appl. Math. , vol.220 , Issue.1-2 , pp. 111-118
    • Qi, F.1    Guo, S.2    Chen, Sh.-X.3
  • 46
    • 37249046597 scopus 로고    scopus 로고
    • Generalizations of a theorem of I. Schur
    • Art. 15
    • Qi F., Li W., and Guo B.-N. Generalizations of a theorem of I. Schur. RGMIA Res. Rep. Coll. 9 3 (2006). http://www.staff.vu.edu.au/rgmia/v9n3.asp Art. 15
    • (2006) RGMIA Res. Rep. Coll. , vol.9 , Issue.3
    • Qi, F.1    Li, W.2    Guo, B.-N.3
  • 48
    • 34249072000 scopus 로고    scopus 로고
    • Logarithmically completely monotonic functions involving gamma and polygamma functions
    • Qi F., Niu D.-W., and Cao J. Logarithmically completely monotonic functions involving gamma and polygamma functions. J. Math. Anal. Approx. Theory 1 1 (2006) 66-74
    • (2006) J. Math. Anal. Approx. Theory , vol.1 , Issue.1 , pp. 66-74
    • Qi, F.1    Niu, D.-W.2    Cao, J.3
  • 49
    • 40949142017 scopus 로고    scopus 로고
    • Four logarithmically completely monotonic functions involving gamma function
    • Qi F., Niu D.-W., Cao J., and Chen Sh.-X. Four logarithmically completely monotonic functions involving gamma function. J. Korean Math. Soc. 45 2 (2008) 559-573
    • (2008) J. Korean Math. Soc. , vol.45 , Issue.2 , pp. 559-573
    • Qi, F.1    Niu, D.-W.2    Cao, J.3    Chen, Sh.-X.4
  • 50
    • 33745628039 scopus 로고    scopus 로고
    • Two logarithmically completely monotonic functions connected with gamma function
    • Qi F., Yang Q., and Li W. Two logarithmically completely monotonic functions connected with gamma function. Integral Trans. Spec. Funct. 17 7 (2006) 539-542
    • (2006) Integral Trans. Spec. Funct. , vol.17 , Issue.7 , pp. 539-542
    • Qi, F.1    Yang, Q.2    Li, W.3
  • 51
    • 54049111922 scopus 로고    scopus 로고
    • H. van Haeringen, Completely Monotonic and Related Functions, Report 93-108, Faculty of Technical Mathematics and Informatics, Delft University of Technology, Delft, The Netherlands, 1993.
    • H. van Haeringen, Completely Monotonic and Related Functions, Report 93-108, Faculty of Technical Mathematics and Informatics, Delft University of Technology, Delft, The Netherlands, 1993.
  • 52
    • 0041882790 scopus 로고
    • Note on the gamma function
    • Wendel J.G. Note on the gamma function. Am. Math. Monthly 55 9 (1948) 563-564
    • (1948) Am. Math. Monthly , vol.55 , Issue.9 , pp. 563-564
    • Wendel, J.G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.