메뉴 건너뛰기




Volumn 17, Issue 7, 2006, Pages 539-542

Two logarithmically completely monotonic functions connected with gamma function

Author keywords

Gamma function; Logarithmically completely monotonic function

Indexed keywords


EID: 33745628039     PISSN: 10652469     EISSN: 14768291     Source Type: Journal    
DOI: 10.1080/10652460500422379     Document Type: Article
Times cited : (27)

References (4)
  • 1
    • 24144459944 scopus 로고    scopus 로고
    • A geometrical proof of a new inequality for the gamma function
    • Art. 48
    • Alsina, C. and Tomás, M.S., 2005, A geometrical proof of a new inequality for the gamma function. Journal of Inequalities in Puiv and Applied Mathematics, 6(2), Art. 48. Available online at: http://jipam. vu.edu.au/article.php?sid=517.
    • (2005) Journal of Inequalities in Puiv and Applied Mathematics , vol.6 , Issue.2
    • Alsina, C.1    Tomás, M.S.2
  • 2
    • 24144456511 scopus 로고    scopus 로고
    • A note on certain inequalities for the gamma function
    • Art. 61
    • Sándor, J., 2005, A note on certain inequalities for the gamma function. Journal of Inequalities in Pure and Applied Mathematics, 6(3), Art. 61. Available online at: http://jipam.vu.edu.au/article.php?sid=534.
    • (2005) Journal of Inequalities in Pure and Applied Mathematics , vol.6 , Issue.3
    • Sándor, J.1
  • 3
    • 34249780598 scopus 로고    scopus 로고
    • Certain logarithmically N-altemating monotonic functions involving gamma and q-gamma functions
    • Ait. 5
    • Qi, F., 2005, Certain logarithmically N-altemating monotonic functions involving gamma and q-gamma functions. RGMIA Research Report Collection, 8(3), Ait. 5. Available online at: http://rgmia.vu.edu.au/v8n3.html.
    • (2005) RGMIA Research Report Collection , vol.8 , Issue.3
    • Qi, F.1
  • 4
    • 1042279113 scopus 로고    scopus 로고
    • Sharp inequalities for the digamma and polygamma functions
    • Alzer, H., 2004, Sharp inequalities for the digamma and polygamma functions. Forum Mathematics, 16, 1851-221.
    • (2004) Forum Mathematics , vol.16 , pp. 1851-2221
    • Alzer, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.