-
1
-
-
0003616740
-
-
Butterworth-Heinemann, Woburn
-
M. F. Ashby, A. Evans, N. A. Fleck, L. J. Gibson, J. W. Hutchinson, H. N. G. Wasley, Metal Foams: A Design Guide, Butterworth-Heinemann, Woburn 2000.
-
(2000)
Metal Foams: A Design Guide
-
-
Ashby, M.F.1
Evans, A.2
Fleck, N.A.3
Gibson, L.J.4
Hutchinson, J.W.5
Wasley, H.N.G.6
-
3
-
-
26944488525
-
-
A. M. Hodge, J. Biener, L. L. Hsiung, Y. M. Wang, A. V. Hamza, J. H. Satcher, J. Mater. Res. 2005, 20, 554.
-
(2005)
J. Mater. Res
, vol.20
, pp. 554
-
-
Hodge, A.M.1
Biener, J.2
Hsiung, L.L.3
Wang, Y.M.4
Hamza, A.V.5
Satcher, J.H.6
-
4
-
-
33845759474
-
-
V. Zielasek, B. Jurgens, C. Schulz, J. Biener, M. M. Biener, A. V. Hamza, M. Baumer, Angew. Chem. Int. Ed. 2006, 45, 8241.
-
(2006)
Angew. Chem. Int. Ed
, vol.45
, pp. 8241
-
-
Zielasek, V.1
Jurgens, B.2
Schulz, C.3
Biener, J.4
Biener, M.M.5
Hamza, A.V.6
Baumer, M.7
-
8
-
-
0035932448
-
-
J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov, K. Sieradzki, Nature 2001, 410, 450.
-
(2001)
Nature
, vol.410
, pp. 450
-
-
Erlebacher, J.1
Aziz, M.J.2
Karma, A.3
Dimitrov, N.4
Sieradzki, K.5
-
10
-
-
33646744179
-
-
B. C. Tappan, M. H. Huynh, M. A. Hiskey, D. E. Chavez, E. P. Luther, J. T. Mang, S. F. Son, J. Am. Chem. Soc. 2006, 128, 6589.
-
(2006)
J. Am. Chem. Soc
, vol.128
, pp. 6589
-
-
Tappan, B.C.1
Huynh, M.H.2
Hiskey, M.A.3
Chavez, D.E.4
Luther, E.P.5
Mang, J.T.6
Son, S.F.7
-
11
-
-
33746279169
-
-
N. N. Akl, O. Trofymluk, X. B. Qi, J. Y. Kim, F. E. Osterloh, A. Navrotsky, Angew. Chem. Int. Ed. 2006, 45, 3653.
-
(2006)
Angew. Chem. Int. Ed
, vol.45
, pp. 3653
-
-
Akl, N.N.1
Trofymluk, O.2
Qi, X.B.3
Kim, J.Y.4
Osterloh, F.E.5
Navrotsky, A.6
-
12
-
-
0043210940
-
-
D. Walsh, L. Arcelli, T. Ikoma, J. Tanaka, S. Mann, Nat. Mater. 2003, 2, 386.
-
(2003)
Nat. Mater
, vol.2
, pp. 386
-
-
Walsh, D.1
Arcelli, L.2
Ikoma, T.3
Tanaka, J.4
Mann, S.5
-
13
-
-
0037804639
-
-
D. G. Shchukin, R. A. Caruso, Chem. Commun. (Cambridge, UK) 2003, 13, 1478.
-
(2003)
Chem. Commun. (Cambridge, UK)
, vol.13
, pp. 1478
-
-
Shchukin, D.G.1
Caruso, R.A.2
-
14
-
-
0038007276
-
-
D. V. Pugh, A. Dursun, S. G. Corcoran, J. Mater. Res. 2003, 18, 216.
-
(2003)
J. Mater. Res
, vol.18
, pp. 216
-
-
Pugh, D.V.1
Dursun, A.2
Corcoran, S.G.3
-
17
-
-
34247340971
-
-
R. Klajn, K. J. M. Bishop, M. Fialkowski, M. Paszewski, C. J. Campbell, T. P. Gray, B. A. Grzybowski, Science 2007, 316, 261.
-
(2007)
Science
, vol.316
, pp. 261
-
-
Klajn, R.1
Bishop, K.J.M.2
Fialkowski, M.3
Paszewski, M.4
Campbell, C.J.5
Gray, T.P.6
Grzybowski, B.A.7
-
18
-
-
34547511198
-
-
R. Klajn, K. J. M. Bishop, B. A. Grzybowski, Proc. Natl. Acad. Sci. USA 2007, 104, 10305.
-
(2007)
Proc. Natl. Acad. Sci. USA
, vol.104
, pp. 10305
-
-
Klajn, R.1
Bishop, K.J.M.2
Grzybowski, B.A.3
-
19
-
-
36148976456
-
-
R. Klajn, A. O. Pinchuk, G. C. Schatz, B. A. Grzybowski, Angew. Chem. Int. Ed. 2007, 46, 8363.
-
(2007)
Angew. Chem. Int. Ed
, vol.46
, pp. 8363
-
-
Klajn, R.1
Pinchuk, A.O.2
Schatz, G.C.3
Grzybowski, B.A.4
-
20
-
-
53849146912
-
-
We have previously shown that suprasphere growth can be approximated by a nucleation-and-growth mechanism (see Ref. 18) and the average number of NPs per SS, 〈N〉 is proportional to the ratio of CNP and the equilibrium concentration of critical nuclei, CNuc. From basic nucleation theory, the concentration of critical nuclei CNuc is proportional to the number of nucleation sites per unit area, which here is proportional to the fractional surface coverage. θ, of DT ligands on NP surfaces. It follows that 〈N〉 ∼ CNP/θ. Furthermore, since θ is approximately constant for constant C NP/CDT, the size of the aggregates is expected to increase monotonically with CNP in qualitative agreement with experimental observations in Figure 1b
-
NP in qualitative agreement with experimental observations in Figure 1b.
-
-
-
-
21
-
-
0035535233
-
-
M.J. Yacaman, J. A. Ascencio, H. B. Liu, J. Gardea-Torresdey, J. Vac. Sci. Technol. B 2001, 19, 1091.
-
(2001)
J. Vac. Sci. Technol. B
, vol.19
, pp. 1091
-
-
Yacaman, M.J.1
Ascencio, J.A.2
Liu, H.B.3
Gardea-Torresdey, J.4
-
23
-
-
0000192181
-
-
D. V. Leff, L. Brandt, J. R. Heath, Langmuir 1996, 12, 4723.
-
(1996)
Langmuir
, vol.12
, pp. 4723
-
-
Leff, D.V.1
Brandt, L.2
Heath, J.R.3
-
24
-
-
0030577126
-
-
H. M. Schessler, D. S. Karpovich, G. J. Blanchard, J. Am. Chem. Soc. 1996, 118, 9645.
-
(1996)
J. Am. Chem. Soc
, vol.118
, pp. 9645
-
-
Schessler, H.M.1
Karpovich, D.S.2
Blanchard, G.J.3
-
25
-
-
53849141669
-
-
Similar temperatures have reported for other noble metals, e.g, thiols desorb from silver at 110°C (see Ref. 26).
-
Similar temperatures have reported for other noble metals, e.g, thiols desorb from silver at 110°C (see Ref. 26).
-
-
-
-
27
-
-
33646169804
-
-
H. T. Liu, P. He, Z. Y. Li, J. H. Li, Nanotechnology 2006, 17, 2167.
-
(2006)
Nanotechnology
, vol.17
, pp. 2167
-
-
Liu, H.T.1
He, P.2
Li, Z.Y.3
Li, J.H.4
-
28
-
-
53849109775
-
-
From the point of thermodynamics, the foams generated at constant temperature, 110°C reflux can be classified as a local free energy minimum. The global minimum corresponding to the bulk gold is not kinetically accessible.
-
From the point of thermodynamics, the foams generated at constant temperature, 110°C reflux can be classified as a local free energy minimum. The global minimum corresponding to the bulk gold is not kinetically accessible.
-
-
-
-
29
-
-
1542611622
-
-
A. Fukuoka, H. Araki, J. Kimura. Y. Sakamoto, T. Higuchi, N. Sugimoto, S. Inagaki, M. Ichikawa, J. Mater. Chem. 2004, 14, 752.
-
(2004)
J. Mater. Chem
, vol.14
, pp. 752
-
-
Fukuoka, A.1
Araki, H.2
Kimura, J.3
Sakamoto, Y.4
Higuchi, T.5
Sugimoto, N.6
Inagaki, S.7
Ichikawa, M.8
-
30
-
-
22744456426
-
-
C. P. Stemmet, J. N. Jongmans, J. van der Schaaf, B. F. M. Kuster, J. C. Schouten, Chem. Eng. Sci. 2005, 60, 6422.
-
(2005)
Chem. Eng. Sci
, vol.60
, pp. 6422
-
-
Stemmet, C.P.1
Jongmans, J.N.2
van der Schaaf, J.3
Kuster, B.F.M.4
Schouten, J.C.5
-
31
-
-
0347297412
-
-
H. Stanzick, J. Klenke, S. Danilkin, J. Banhart, Appl. Phys. Part A: Mater. Sci. Process. 2002, 74, S1118.
-
(2002)
Appl. Phys. Part A: Mater. Sci. Process
, vol.74
-
-
Stanzick, H.1
Klenke, J.2
Danilkin, S.3
Banhart, J.4
-
32
-
-
53849141998
-
-
Other surfaces we studies included silica, glass, PDMS and mica - in these cases, we observed the formation of bands (cf. Ref. 17) as opposed to uniform films of SS.
-
Other surfaces we studies included silica, glass, PDMS and mica - in these cases, we observed the formation of bands (cf. Ref. 17) as opposed to uniform films of SS.
-
-
-
-
33
-
-
53849146568
-
-
-2 at 10kV) was sufficient to crosslink - but not fully melt - the nearby SS. In such case, the structures could be processed into nanoporous metals by (i) washing off the unirradiated regions in alkanethiol/toluene solution and (ii) heating the patterned substrates in toluene at 110°C.
-
-2 at 10kV) was sufficient to crosslink - but not fully "melt" - the nearby SS. In such case, the structures could be processed into nanoporous metals by (i) washing off the unirradiated regions in alkanethiol/toluene solution and (ii) heating the patterned substrates in toluene at 110°C.
-
-
-
-
34
-
-
53849092542
-
-
S. J. Randolph, J. D. Folkes, P. D. Rack, J. Appl. Phys. 2005, 97, 8.
-
(2005)
J. Appl. Phys
, vol.97
, pp. 8
-
-
Randolph, S.J.1
Folkes, J.D.2
Rack, P.D.3
-
35
-
-
0036883202
-
-
D. C. Chu. D. T. Bilir, R. F. W. Pease, K. E. Goodson. J. Vac. Sci. Technol. B 2002, 20, 3044.
-
(2002)
J. Vac. Sci. Technol. B
, vol.20
, pp. 3044
-
-
Chu, D.C.1
Bilir, D.T.2
Pease, R.F.W.3
Goodson, K.E.4
|