-
1
-
-
27144434143
-
-
J. V. Barth, G. Costantini, K. Kern, Nature 2005, 437, 671.
-
(2005)
Nature
, vol.437
, pp. 671
-
-
Barth, J.V.1
Costantini, G.2
Kern, K.3
-
3
-
-
0001536394
-
-
T. A. Jung, R. R. Schlitter, J. K. Gimzewski, H. Tang, C. Joachim, Science 1996, 271, 181.
-
(1996)
Science
, vol.271
, pp. 181
-
-
Jung, T.A.1
Schlitter, R.R.2
Gimzewski, J.K.3
Tang, H.4
Joachim, C.5
-
4
-
-
0026433721
-
-
G. M. Whitesides, J. P. Mathias, C. T. Seto, Science 1991, 254, 1312.
-
(1991)
Science
, vol.254
, pp. 1312
-
-
Whitesides, G.M.1
Mathias, J.P.2
Seto, C.T.3
-
5
-
-
0038826475
-
-
M. Böhringer, K. Morgenstern, W. D. Schneider, R. Berndt, F. Mauri, A. De Vita, R. Car, Phys. Rev. Lett. 1999, 83, 324.
-
(1999)
Phys. Rev. Lett
, vol.83
, pp. 324
-
-
Böhringer, M.1
Morgenstern, K.2
Schneider, W.D.3
Berndt, R.4
Mauri, F.5
De Vita, A.6
Car, R.7
-
6
-
-
0000916138
-
-
J. V. Barth, J. Weckesser, C. Z. Cai, P. Gunter, L. Burgi, O. Jeandupeux, K. Kern, Angew. Chem. 2000, 112, 1285;
-
(2000)
Angew. Chem
, vol.112
, pp. 1285
-
-
Barth, J.V.1
Weckesser, J.2
Cai, C.Z.3
Gunter, P.4
Burgi, L.5
Jeandupeux, O.6
Kern, K.7
-
8
-
-
0035846145
-
-
T. Yokoyama, S. Yokoyama, T. Kamikado, Y. Okuno, S. Mashiko, Nature 2001, 413, 619.
-
(2001)
Nature
, vol.413
, pp. 619
-
-
Yokoyama, T.1
Yokoyama, S.2
Kamikado, T.3
Okuno, Y.4
Mashiko, S.5
-
9
-
-
0042865998
-
-
J. A. Theobald, N. S. Oxtoby, M. A. Phillips, N. R. Champness, P. H. Beton, Nature 2003, 424, 1029.
-
(2003)
Nature
, vol.424
, pp. 1029
-
-
Theobald, J.A.1
Oxtoby, N.S.2
Phillips, M.A.3
Champness, N.R.4
Beton, P.H.5
-
10
-
-
33747588537
-
-
G. Pawin, K. L. Wong, K.-Y. Kwon, L. Bartels, Science 2006, 313, 961.
-
(2006)
Science
, vol.313
, pp. 961
-
-
Pawin, G.1
Wong, K.L.2
Kwon, K.-Y.3
Bartels, L.4
-
11
-
-
0001064009
-
-
A. Semenov, J. P. Spatz, M. Moller, J. M. Lehn, B. Sell, D. Schubert, C. H. Weidl, U. S. Schubert, Angew. Chem. 1999, 111, 2701;
-
(1999)
Angew. Chem
, vol.111
, pp. 2701
-
-
Semenov, A.1
Spatz, J.P.2
Moller, M.3
Lehn, J.M.4
Sell, B.5
Schubert, D.6
Weidl, C.H.7
Schubert, U.S.8
-
13
-
-
0038108401
-
-
N. Lin, A. Dmitriev, J. Weckesser, J. V. Barth, K. Kern, Angew. Chem. 2002, 114, 4973;
-
(2002)
Angew. Chem
, vol.114
, pp. 4973
-
-
Lin, N.1
Dmitriev, A.2
Weckesser, J.3
Barth, J.V.4
Kern, K.5
-
15
-
-
0037184440
-
-
P. Messina, A. Dmitriev, N. Lin, H. Spillmann, M. Abel, J. V. Barth, K. Kern, J. Am. Chem. Soc. 2002, 124, 14000.
-
(2002)
J. Am. Chem. Soc
, vol.124
, pp. 14000
-
-
Messina, P.1
Dmitriev, A.2
Lin, N.3
Spillmann, H.4
Abel, M.5
Barth, J.V.6
Kern, K.7
-
16
-
-
17144411475
-
-
N. Lin, S. Stepanow, F. Vidal, J. V. Barth, K. Kern, Chem. Commun. 2005, 1681.
-
(2005)
Chem. Commun
, pp. 1681
-
-
Lin, N.1
Stepanow, S.2
Vidal, F.3
Barth, J.V.4
Kern, K.5
-
17
-
-
33846163413
-
-
O. P. H. Vaughan, F. J. Williams, N. Bampos, R. M. Lambert, Angew. Chem. 2006, 118, 3863;
-
(2006)
Angew. Chem
, vol.118
, pp. 3863
-
-
Vaughan, O.P.H.1
Williams, F.J.2
Bampos, N.3
Lambert, R.M.4
-
19
-
-
53549110589
-
-
S. Lukas, G. Witte, Ch. Wöll, Phys. Rev. Lett. 2002, 88, 028391.
-
(2002)
Phys. Rev. Lett
, vol.88
, pp. 028391
-
-
Lukas, S.1
Witte, G.2
Wöll, C.3
-
20
-
-
0037997629
-
-
F. J. Williams, D. P. C. Bird, E. C. H. Sykes, A. K. Santra, R. M. Lambert, J. Phys. Chem. B 2003, 107, 3824.
-
(2003)
J. Phys. Chem. B
, vol.107
, pp. 3824
-
-
Williams, F.J.1
Bird, D.P.C.2
Sykes, E.C.H.3
Santra, A.K.4
Lambert, R.M.5
-
22
-
-
0028266384
-
-
S R. Viswanathan, J. A. Zasadzinski, D. K. Schwartz, Nature 1994, 368, 440.
-
(1994)
Nature
, vol.368
, pp. 440
-
-
Viswanathan, S.R.1
Zasadzinski, J.A.2
Schwartz, D.K.3
-
23
-
-
0000964649
-
-
M. Böhringer, K. Morgenstern, W.-D. Schneider, R. Berndt, Angew. Chem. 1999, 111, 832;
-
(1999)
Angew. Chem
, vol.111
, pp. 832
-
-
Böhringer, M.1
Morgenstern, K.2
Schneider, W.-D.3
Berndt, R.4
-
25
-
-
53549118389
-
-
PhD thesis, University of Cambridge UK
-
R. L. Cropley, PhD thesis, University of Cambridge (UK), 2004.
-
(2004)
-
-
Cropley, R.L.1
-
26
-
-
53549104504
-
-
PhD thesis, University of Cambridge UK
-
O. P. H. Vaughan, PhD thesis, University of Cambridge (UK), 2006.
-
(2006)
-
-
Vaughan, O.P.H.1
-
27
-
-
0348147683
-
-
E. C. H. Sykes, P. Han, S. A. Kandel, K. F. Kelly, G. S. McCarty, P. S. Weiss, Acc. Chem. Res. 2003, 36, 945.
-
(2003)
Acc. Chem. Res
, vol.36
, pp. 945
-
-
Sykes, E.C.H.1
Han, P.2
Kandel, S.A.3
Kelly, K.F.4
McCarty, G.S.5
Weiss, P.S.6
-
28
-
-
0034298596
-
-
J. Repp, F. Moresco, G. Meyer, K.-H. Rieder, Phys. Rev. Lett. 2000, 85, 2981.
-
(2000)
Phys. Rev. Lett
, vol.85
, pp. 2981
-
-
Repp, J.1
Moresco, F.2
Meyer, G.3
Rieder, K.-H.4
-
29
-
-
0141608014
-
-
S. Junren, B. Wu, X. C. Xie, E. W. Plummer, Z. Zhang, Phys. Rev. Lett. 2003, 91, 076103.
-
(2003)
Phys. Rev. Lett
, vol.91
, pp. 076103
-
-
Junren, S.1
Wu, B.2
Xie, X.C.3
Plummer, E.W.4
Zhang, Z.5
-
30
-
-
53549092840
-
-
We used the Car-Parrinello molecular dynamics (CPMD) code, with Troullier-Martin norm-conserving pseudopotentials for all species. The wavefunction cutoff was set to 70 Ry. The slab consisted of three layers of Ag(100) and nine layers of vacuum, which corresponds to 12.77 Å of vacuum. We found an adsorption energy of 1.2 eV from the LDA and 0.1 eV from the PBE functional, sandwiching the experimental value of about 0.76 eV. This is typical of such DFT calculations, whereby the LDA overbinds and the GGA underbinds. We used LDA because it produces a physical geometry-optimized adsorption structure, which the GGA fails to do. However, the charge analysis we performed on the optimized structure gives similar results with a GGA functional (PBE) as compared to the LDA prediction with PBE we obtained an induced dipole of 1.10 D, and with LDA 1.15 D, in both cases we observed a significant amplification of the intrinsic molecular dipole, In other words, the charge redistribution is ess
-
We used the Car-Parrinello molecular dynamics (CPMD) code, with Troullier-Martin norm-conserving pseudopotentials for all species. The wavefunction cutoff was set to 70 Ry. The slab consisted of three layers of Ag(100) and nine layers of vacuum, which corresponds to 12.77 Å of vacuum. We found an adsorption energy of 1.2 eV from the LDA and 0.1 eV from the PBE functional, sandwiching the experimental value of about 0.76 eV. This is typical of such DFT calculations, whereby the LDA overbinds and the GGA underbinds. We used LDA because it produces a physical geometry-optimized adsorption structure, which the GGA fails to do. However, the charge analysis we performed on the optimized structure gives similar results with a GGA functional (PBE) as compared to the LDA prediction (with PBE we obtained an induced dipole of 1.10 D, and with LDA 1.15 D, in both cases we observed a significant amplification of the intrinsic molecular dipole). In other words, the charge redistribution is essentially the same in both functionals for a given geometry.
-
-
-
-
31
-
-
34249034929
-
-
A. E. Baber, S. C. Jensen, E. C. H. Sykes, J. Am. Chem. Soc. 2007, 129, 6368.
-
(2007)
J. Am. Chem. Soc
, vol.129
, pp. 6368
-
-
Baber, A.E.1
Jensen, S.C.2
Sykes, E.C.H.3
-
33
-
-
29744449346
-
-
G. Witte, S. Lukas, P. S. Bagus, C. Wöll, Appl. Phys. Lett. 2005, 87, 263502.
-
(2005)
Appl. Phys. Lett
, vol.87
, pp. 263502
-
-
Witte, G.1
Lukas, S.2
Bagus, P.S.3
Wöll, C.4
|