-
1
-
-
0000019667
-
-
T. Niori, T. Sekine, J. Watanabe, T. Furukawa, H. Takezoe, J. Mater. Chem. 1996, 6, 1231.
-
(1996)
J. Mater. Chem
, vol.6
, pp. 1231
-
-
Niori, T.1
Sekine, T.2
Watanabe, J.3
Furukawa, T.4
Takezoe, H.5
-
2
-
-
0031452438
-
-
D. R. Link, G. Natale, R. Shao, J. E. Maclennan, N. A. Clark, E. Körblova, D. M. Walba, Science 1997, 278, 1924.
-
(1997)
Science
, vol.278
, pp. 1924
-
-
Link, D.R.1
Natale, G.2
Shao, R.3
Maclennan, J.E.4
Clark, N.A.5
Körblova, E.6
Walba, D.M.7
-
4
-
-
0142071980
-
-
b) G. Pelzl, S. Diele, W. Weissflog, Adv. Mater. 1999, 11, 707;
-
(1999)
Adv. Mater
, vol.11
, pp. 707
-
-
Pelzl, G.1
Diele, S.2
Weissflog, W.3
-
7
-
-
53249096943
-
-
The origin of supermolecular chirality is described in Figures S1 and S2 in the Supporting Information. Due to the opposing definitions of the term dipole moment in chemistry and physics, it is proposed that the bend direction is used for the definition of layer chirality in Figure S1.
-
The origin of supermolecular chirality is described in Figures S1 and S2 in the Supporting Information. Due to the opposing definitions of the term "dipole moment" in chemistry and physics, it is proposed that the bend direction is used for the definition of layer chirality in Figure S1.
-
-
-
-
8
-
-
0343431504
-
-
a) D. M. Walba, E. Körblova, R. Shao, J. E. Maclennan, D. R. Link, M. A. Glaser, N. A. Clark, Science 2000, 288, 2181-2184;
-
(2000)
Science
, vol.288
, pp. 2181-2184
-
-
Walba, D.M.1
Körblova, E.2
Shao, R.3
Maclennan, J.E.4
Link, D.R.5
Glaser, M.A.6
Clark, N.A.7
-
10
-
-
23744477164
-
-
c) T. S. K. Lee, S. Heo, J. G. Lee, K.-T. Kang, K. Kumazawa, K. Nishida, Y. Shimbo, Y. Takanishi, J. Watanabe, T. Doi, T. Takahashi, H. Takezoe, J. Am. Chem. Soc. 2005, 127, 11085-11091;
-
(2005)
J. Am. Chem. Soc
, vol.127
, pp. 11085-11091
-
-
Lee, T.S.K.1
Heo, S.2
Lee, J.G.3
Kang, K.-T.4
Kumazawa, K.5
Nishida, K.6
Shimbo, Y.7
Takanishi, Y.8
Watanabe, J.9
Doi, T.10
Takahashi, T.11
Takezoe, H.12
-
11
-
-
0038170881
-
-
d) E. Gorecka, D. Pociecha, F. Araoka, D. R. Link, M. Nakata, J. Thisayukta, Y. Takanishi, K. Ishikawa, J. Watanabe, H. Takezoe, Phys. Rev. E 2000, 62, R4524-R4527;
-
(2000)
Phys. Rev. E
, vol.62
-
-
Gorecka, E.1
Pociecha, D.2
Araoka, F.3
Link, D.R.4
Nakata, M.5
Thisayukta, J.6
Takanishi, Y.7
Ishikawa, K.8
Watanabe, J.9
Takezoe, H.10
-
12
-
-
0036687329
-
-
e) J. P. Bedel, J. C. Rouillon, J. P. Marcerou, M. Laguerre, H. T. Nguyen, M. F. Achard, J. Mater. Chem. 2002, 12, 2214-2220;
-
(2002)
J. Mater. Chem
, vol.12
, pp. 2214-2220
-
-
Bedel, J.P.1
Rouillon, J.C.2
Marcerou, J.P.3
Laguerre, M.4
Nguyen, H.T.5
Achard, M.F.6
-
13
-
-
0036092194
-
-
f) H. Nádasi, W. Weissflog, A. Eremin, G. Pelzl, S. Diele, S. Das, S. Grande, J. Mater. Chem. 2002, 12, 1316-1324.
-
(2002)
J. Mater. Chem
, vol.12
, pp. 1316-1324
-
-
Nádasi, H.1
Weissflog, W.2
Eremin, A.3
Pelzl, G.4
Diele, S.5
Das, S.6
Grande, S.7
-
14
-
-
15244355528
-
-
a) W. Weissflog, U. Dunemann, M. W. Schröder, S. Diele, G. Pelzl, H. Kresse, S. Grande, J. Mater. Chem. 2005, 15, 939-946;
-
(2005)
J. Mater. Chem
, vol.15
, pp. 939-946
-
-
Weissflog, W.1
Dunemann, U.2
Schröder, M.W.3
Diele, S.4
Pelzl, G.5
Kresse, H.6
Grande, S.7
-
15
-
-
42749107281
-
-
b) J. Szydlowska, J. Mieczkowski, J. Matraszek, D. W. Bruce, E. Gorecka, D. Pociecha, D. Guillon, Phys. Rev. E 2003, 67, 031702;
-
(2003)
Phys. Rev. E
, vol.67
, pp. 031702
-
-
Szydlowska, J.1
Mieczkowski, J.2
Matraszek, J.3
Bruce, D.W.4
Gorecka, E.5
Pociecha, D.6
Guillon, D.7
-
16
-
-
42749102793
-
-
c) J. P. Bedel, J. C. Rouillon, J. P. Marcerou, H. T. Nguyen, M. F. Achard, Phys. Rev. E 2004, 69, 061702;
-
(2004)
Phys. Rev. E
, vol.69
, pp. 061702
-
-
Bedel, J.P.1
Rouillon, J.C.2
Marcerou, J.P.3
Nguyen, H.T.4
Achard, M.F.5
-
17
-
-
33144454656
-
-
d) M. Nakata, R. F. Shao, J. E. Maclennan, W. Weissflog, N. A. Clark, Phys. Rev. Lett. 2006, 96, 067802;
-
(2006)
Phys. Rev. Lett
, vol.96
, pp. 067802
-
-
Nakata, M.1
Shao, R.F.2
Maclennan, J.E.3
Weissflog, W.4
Clark, N.A.5
-
18
-
-
33947155857
-
-
e) C. Keith, G. Dantlgraber, R. Amaranatha Reddy, U. Baumeister, C. Tschierske, Chem. Mater. 2007, 19, 694.
-
(2007)
Chem. Mater
, vol.19
, pp. 694
-
-
Keith, C.1
Dantlgraber, G.2
Amaranatha Reddy, R.3
Baumeister, U.4
Tschierske, C.5
-
19
-
-
7744237142
-
-
C. Keith, R. Amaranatha Reddy, U. Baumeister, C. Tschierske, J. Am. Chem. Soc. 2004, 126, 14312.
-
(2004)
J. Am. Chem. Soc
, vol.126
, pp. 14312
-
-
Keith, C.1
Amaranatha Reddy, R.2
Baumeister, U.3
Tschierske, C.4
-
20
-
-
53249116751
-
-
[6d]
-
[6d]
-
-
-
-
21
-
-
2442685300
-
-
a) G. Dantlgraber, A. Eremin, S. Diele, A. Hauser, H. Kresse, G. Pelzl, C. Tschierske, Angew. Chem. 2002, 114, 2514;
-
(2002)
Angew. Chem
, vol.114
, pp. 2514
-
-
Dantlgraber, G.1
Eremin, A.2
Diele, S.3
Hauser, A.4
Kresse, H.5
Pelzl, G.6
Tschierske, C.7
-
23
-
-
34250748617
-
-
b) R. Amaranatha Reddy, G. Dantlgraber, U. Baumeister, C. Tschierske, Angew. Chem. 2006, 118, 1962;
-
(2006)
Angew. Chem
, vol.118
, pp. 1962
-
-
Amaranatha Reddy, R.1
Dantlgraber, G.2
Baumeister, U.3
Tschierske, C.4
-
25
-
-
33645025102
-
-
The nanosegregated siloxane sublayers were directly observed by diffuse scattering in the wide-angle region of X-ray scattering: C. Keith, R. Amaranatha Reddy, A. Hauser, U. Baumeister, C. Tschierske, J. Am. Chem. Soc. 2006, 128, 3051
-
The nanosegregated siloxane sublayers were directly observed by diffuse scattering in the wide-angle region of X-ray scattering: C. Keith, R. Amaranatha Reddy, A. Hauser, U. Baumeister, C. Tschierske, J. Am. Chem. Soc. 2006, 128, 3051.
-
-
-
-
26
-
-
5044221467
-
-
C. Keith, R. Amaranatha Reddy, H. Hahn, H. Lang, C. Tschierske, Chem. Commun. 2004, 1898.
-
(2004)
Chem. Commun
, vol.1898
-
-
Keith, C.1
Amaranatha Reddy, R.2
Hahn, H.3
Lang, H.4
Tschierske, C.5
-
27
-
-
0037132581
-
-
a
-
a) G. Dantlgraber, U. Baumeister, S. Diele, H. Kresse, B. Lühmann, H. Lang, C. Tschierske, J. Am. Chem. Soc. 2002, 124, 14852;
-
(2002)
J. Am. Chem. Soc
, vol.124
, pp. 14852
-
-
Dantlgraber, G.1
Baumeister, U.2
Diele, S.3
Kresse, H.4
Lühmann, B.5
Lang, H.6
Tschierske, C.7
-
28
-
-
33749848327
-
-
b) H. Hahn, C. Keith, H. Lang, R. Amaranatha Reddy, C. Tschierske, Adv. Mater. 2006, 18, 2629.
-
(2006)
Adv. Mater
, vol.18
, pp. 2629
-
-
Hahn, H.1
Keith, C.2
Lang, H.3
Amaranatha Reddy, R.4
Tschierske, C.5
-
29
-
-
53249116749
-
-
F that describes a specific state/phase structure.
-
F that describes a specific state/phase structure.
-
-
-
-
30
-
-
53249114797
-
-
Note that only synclinic organization was reported for columnar phases with an oblique lattice presumably due to the strong interribbon frustration in an anticlinic organization. See Ref, 6b, 15] Calculated using cosθ, d/L, θ, 43°; the molecular geometry was optimized by the employment of MOPAC calculations using the AM1 Hamiltonian. The molecular length (L, 6.18 nm) is equal to the sum of the length of the molecular long axis from the molecular modeling (5.94 nm) and two times of the van der Waals radius (0.12nm) of the hydrogen atom
-
Note that only synclinic organization was reported for columnar phases with an oblique lattice presumably due to the strong interribbon frustration in an anticlinic organization. See Ref. [6b]. [15] Calculated using cosθ = d/L, θ = 43°; the molecular geometry was optimized by the employment of MOPAC calculations using the AM1 Hamiltonian. The molecular length (L = 6.18 nm) is equal to the sum of the length of the molecular long axis from the molecular modeling (5.94 nm) and two times of the van der Waals radius (0.12nm) of the hydrogen atom.
-
-
-
-
31
-
-
53249102730
-
-
It is possible that in the field-induced FE state the layer modulation could be not completely removed. Therefore, the synclinic FE structure induced from the ColobPA phase is assigned as, or, )-SmC sPF-like so that it can be distinguished from, or, )-SmCsPF structures, induced in the nonmodulated smectic phases SmCsPFE phases of compounds 1 and 2, where such layer modulations can be excluded
-
FE phases of compounds 1 and 2), where such layer modulations can be excluded.
-
-
-
-
32
-
-
53249122488
-
-
This is achieved by cooling the isotropic liquid under a square electric field (± 30 V, 10 Hz) and then switching to a triangular electric field ± 30 Vpp, 10 Hz
-
This is achieved by cooling the isotropic liquid under a square electric field (± 30 V, 10 Hz) and then switching to a triangular electric field (± 30 Vpp, 10 Hz).
-
-
-
-
33
-
-
53249116750
-
-
The application of a square-wave field always results in single-peak switching since there is no time (at 0 V) to allow polar states to relax to the ground-state AF structure. Hence, under a square-wave field ferroelectric and antiferroelectric switching cannot be distinguished, and therefore the term polar switching (PS) is used here
-
The application of a square-wave field always results in single-peak switching since there is no time (at 0 V) to allow polar states to relax to the ground-state AF structure. Hence, under a square-wave field ferroelectric and antiferroelectric switching cannot be distinguished, and therefore the term polar switching (PS) is used here.
-
-
-
-
34
-
-
53249110840
-
-
It should be noted that the initial application of a square-wave electric field leads to AF switching from ColobPA to SmC sPF-like structures by rotation around the molecular long axis, and polar switching by rotation about a cone occurs subsequently as the sign of the electric field is changed
-
F-like structures by rotation around the molecular long axis, and polar switching by rotation about a cone occurs subsequently as the sign of the electric field is changed.
-
-
-
-
35
-
-
4243318663
-
-
a) G. Heppke, A Jakli, S. Rauch, H. Sawade, Phys. Rev. E 1999, 60, 5575;
-
(1999)
Phys. Rev. E
, vol.60
, pp. 5575
-
-
Heppke, G.1
Jakli, A.2
Rauch, S.3
Sawade, H.4
-
36
-
-
42749102146
-
-
b) S. Rauch, C. Selbmann, P. Bault, H. Sawade, G. Heppke, O. Morales-Saavedra, M. Y. M. Huang, A Jakli, Phys. Rev. E 2004, 69, 021707.
-
(2004)
Phys. Rev. E
, vol.69
, pp. 021707
-
-
Rauch, S.1
Selbmann, C.2
Bault, P.3
Sawade, H.4
Heppke, G.5
Morales-Saavedra, O.6
Huang, M.Y.M.7
Jakli, A.8
-
37
-
-
0342468762
-
-
A. Jákli, C. Lischka, W. Weissflog, G. Pelzl, S. Rauch, G. Heppke, Ferroelectrics 2000, 243, 239.
-
(2000)
Ferroelectrics
, vol.243
, pp. 239
-
-
Jákli, A.1
Lischka, C.2
Weissflog, W.3
Pelzl, G.4
Rauch, S.5
Heppke, G.6
-
38
-
-
34548545690
-
-
Y. Zhang, M. Wand, M. J. O'Callaghan, C. M. Walker, W. Thurme, Ferroelectrics 2006, 344, 11.
-
(2006)
Ferroelectrics
, vol.344
, pp. 11
-
-
Zhang, Y.1
Wand, M.2
O'Callaghan, M.J.3
Walker, C.M.4
Thurme, W.5
-
39
-
-
53249083549
-
-
F phase was recently reported, which probably results from the reorganization of molecules in anticlinic interfaces upon the application of a dynamic ac field: R. Amaranatha Reddy, M. W. Schröder, M. Bodyagin, H. Kresse, S. Diele, G. Pelzl, W. Weissflog, Angew. Chem. 2005, 117, 784;
-
F phase was recently reported, which probably results from the reorganization of molecules in anticlinic interfaces upon the application of a dynamic ac field: R. Amaranatha Reddy, M. W. Schröder, M. Bodyagin, H. Kresse, S. Diele, G. Pelzl, W. Weissflog, Angew. Chem. 2005, 117, 784;
-
-
-
|