-
1
-
-
0029559848
-
-
a) K. Soai, T. Shibata, H. Morioka, K. Choji, Nature 1995, 378, 767-768;
-
(1995)
Nature
, vol.378
, pp. 767-768
-
-
Soai, K.1
Shibata, T.2
Morioka, H.3
Choji, K.4
-
2
-
-
0033623873
-
-
b) K. Soai, T. Shibata, I. Sato, Acc. Chem. Res. 2000, 33, 382-390;
-
(2000)
Acc. Chem. Res
, vol.33
, pp. 382-390
-
-
Soai, K.1
Shibata, T.2
Sato, I.3
-
4
-
-
84955108306
-
-
Eds, K. Mikami, M. Lautens, Wiley-Interscience, Hoboken
-
d) K. Soai, T. Kawasaki, I. Sato in New Frontiers in Asymmetric Catalysis (Eds.: K. Mikami, M. Lautens), Wiley-Interscience, Hoboken, 2007, pp. 259-274.
-
(2007)
New Frontiers in Asymmetric Catalysis
, pp. 259-274
-
-
Soai, K.1
Kawasaki, T.2
Sato, I.3
-
6
-
-
0037449649
-
-
b) K. Soai, I. Sato, T. Shibata, S. Komiya, M. Hayashi, Y. Matsueda, H. Imamura, T. Hayase, H. Morioka, H. Tabira, J. Yamamoto, Y. Kowata, Tetrahedron: Asymmetry 2003, 14, 185-188;
-
(2003)
Tetrahedron: Asymmetry
, vol.14
, pp. 185-188
-
-
Soai, K.1
Sato, I.2
Shibata, T.3
Komiya, S.4
Hayashi, M.5
Matsueda, Y.6
Imamura, H.7
Hayase, T.8
Morioka, H.9
Tabira, H.10
Yamamoto, J.11
Kowata, Y.12
-
7
-
-
0344981496
-
-
c) I. D. Gridnev, J. M. Serafimov, H. Quiney, J. M. Brown, Org. Biomol. Chem. 2003, 1, 3811-3819;
-
(2003)
Org. Biomol. Chem
, vol.1
, pp. 3811-3819
-
-
Gridnev, I.D.1
Serafimov, J.M.2
Quiney, H.3
Brown, J.M.4
-
10
-
-
35448987343
-
-
f) B. Barabas, L. Caglioti, C. Zucchi, M. Maioli, E. GMl, K. Micskei, G. Pályi, J. Phys. Chem. B 2007, 111, 11506-11510.
-
(2007)
J. Phys. Chem. B
, vol.111
, pp. 11506-11510
-
-
Barabas, B.1
Caglioti, L.2
Zucchi, C.3
Maioli, M.4
GMl, E.5
Micskei, K.6
Pályi, G.7
-
11
-
-
1942437586
-
-
Previous computational studies of the Soai reaction were mainly focused on oligomeric structures of the product catalyst: a I. D. Gridnev, J. M. Brown, Proc. Natl. Acad. Sci. USA 2004, 101, 5727-5731;
-
Previous computational studies of the Soai reaction were mainly focused on oligomeric structures of the product catalyst: a) I. D. Gridnev, J. M. Brown, Proc. Natl. Acad. Sci. USA 2004, 101, 5727-5731;
-
-
-
-
13
-
-
0035904413
-
-
a) D. G. Blackmond, C. R. McMillan, S. Ramdeehul, A. Schorm, J. M. Brown, J. Am. Chem. Soc. 2001, 123, 10103-10104;
-
(2001)
J. Am. Chem. Soc
, vol.123
, pp. 10103-10104
-
-
Blackmond, D.G.1
McMillan, C.R.2
Ramdeehul, S.3
Schorm, A.4
Brown, J.M.5
-
17
-
-
18844419251
-
-
I. D. Gridnev, J. M. Serafimov, J. M. Brown, Angew. Chem. 2004, 116, 4992-4995;
-
(2004)
Angew. Chem
, vol.116
, pp. 4992-4995
-
-
Gridnev, I.D.1
Serafimov, J.M.2
Brown, J.M.3
-
18
-
-
4744354453
-
-
Angew. Chem. Int. Ed. 2004, 43, 4884-4887.
-
(2004)
Angew. Chem. Int. Ed
, vol.43
, pp. 4884-4887
-
-
-
19
-
-
53249099909
-
-
This approach is considered the best trade-off for large systems, since energies computed with the B3LYP functional are surprisingly insensitive to the geometry optimization level. J. B. Foresman, Æ. Frisch, Exploring Chemistry with Electronic Structure Methods, 2nd ed, Gaussian Inc, Pittsburgh, 1996, pp. 146-150;
-
a) This approach is considered the best trade-off for large systems, since energies computed with the B3LYP functional are surprisingly insensitive to the geometry optimization level. J. B. Foresman, Æ. Frisch, Exploring Chemistry with Electronic Structure Methods, 2nd ed., Gaussian Inc., Pittsburgh, 1996, pp. 146-150;
-
-
-
-
20
-
-
0011083273
-
-
HF/3-21G(d) frequencies were scaled by the factor 0.9207. A. P. Scott, L. Radom, J. Phys, Chem. 1996, 100, 16502-16513;
-
b) HF/3-21G(d) frequencies were scaled by the factor 0.9207. A. P. Scott, L. Radom, J. Phys . Chem. 1996, 100, 16502-16513;
-
-
-
-
21
-
-
53249155558
-
-
Computational details, optimized geometries, and energies are reported in Supporting Information
-
c) Computational details, optimized geometries, and energies are reported in Supporting Information.
-
-
-
-
22
-
-
0003956918
-
-
2nd ed, McGraw-Hill, New York
-
L. P. Hammett, Physical Organic Chemistry, 2nd ed., McGraw-Hill, New York, 1970, pp. 117-119.
-
(1970)
Physical Organic Chemistry
, pp. 117-119
-
-
Hammett, L.P.1
-
23
-
-
53249106853
-
-
2.
-
2.
-
-
-
-
24
-
-
53249114814
-
-
2S could also rapidly dissociate to give the corresponding reactant molecules. Although this possibility seems unlikely, the overall rate of reaction would be in this case just half that of the case being considered.
-
2S could also rapidly dissociate to give the corresponding reactant molecules. Although this possibility seems unlikely, the overall rate of reaction would be in this case just half that of the case being considered.
-
-
-
|