메뉴 건너뛰기




Volumn , Issue , 2008, Pages

Review of data mining clustering techniques to analyze data with high dimensionality as applied in gene expression data (June 2008)

Author keywords

Diagnosis; Gene expression dataset; Knowledge discovery; Subspace clustering

Indexed keywords

BIOACTIVITY; BLOOD VESSELS; CLUSTER ANALYSIS; CLUSTERING ALGORITHMS; DECISION SUPPORT SYSTEMS; DNA; FLOW OF SOLIDS; GENE EXPRESSION; INFORMATION ANALYSIS; INFORMATION MANAGEMENT; MINING; NUCLEIC ACIDS; ONCOLOGY; ORGANIC ACIDS; SEARCH ENGINES;

EID: 52649164556     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICSSSM.2008.4598505     Document Type: Conference Paper
Times cited : (10)

References (26)
  • 1
    • 52649120659 scopus 로고    scopus 로고
    • Parsons, L., E. Haque, and H. Liu, Subspace Clustering for High Dimensional Data: A Review. CEINT, 2004.
    • Parsons, L., E. Haque, and H. Liu, Subspace Clustering for High Dimensional Data: A Review. CEINT, 2004.
  • 6
    • 0028748949 scopus 로고
    • Growing Cell Structures: A Self-Organizing Network for Unsupervised an Supervised Learning
    • Ffitzke, B., Growing Cell Structures: A Self-Organizing Network for Unsupervised an Supervised Learning. Neural Networks, 1994. 7: p. 1441-1460.
    • (1994) Neural Networks , vol.7 , pp. 1441-1460
    • Ffitzke, B.1
  • 7
    • 0020068152 scopus 로고
    • Self-organized formation of topologically correct feature maps
    • Kohonen, T., Self-organized formation of topologically correct feature maps. Biol Cybern, 1982. 43: p. 59-69.
    • (1982) Biol Cybern , vol.43 , pp. 59-69
    • Kohonen, T.1
  • 8
    • 0042863923 scopus 로고    scopus 로고
    • Analysing and Visualization of Gene Expression Data Using Self-Organising Maps
    • Torone, P. and G. Zong, Analysing and Visualization of Gene Expression Data Using Self-Organising Maps, FEBS Letters, 1999. 451:p.142-146.
    • (1999) FEBS Letters , vol.451 , pp. 142-146
    • Torone, P.1    Zong, G.2
  • 9
    • 52649133766 scopus 로고    scopus 로고
    • Analysing and Visualization of Gene Expression Data Using Self-Organising Maps
    • Nikkila, J., et al., Analysing and Visualization of Gene Expression Data Using Self-Organising Maps, FEBS Letters, 2002. 16:p.953-966.
    • (2002) FEBS Letters , vol.16 , pp. 953-966
    • Nikkila, J.1
  • 10
    • 52649159625 scopus 로고    scopus 로고
    • Clustering Gene Expression Data Using Self-Organizing maps and K-means Clustering
    • Fuki, Japan
    • Naoki, Y. and K. Manabu. Clustering Gene Expression Data Using Self-Organizing maps and K-means Clustering, in SICE Annual Conference. 2003. Fuki, Japan
    • (2003) SICE Annual Conference
    • Naoki, Y.1    Manabu, K.2
  • 12
    • 52649120139 scopus 로고    scopus 로고
    • C., T., et al. Interrelated two-way clustering: An unsupervised approach for gene expression data analysis, in Proceeding of BIBE2001: 2nd IEEE International Symposium on Bioinformatics and Bioengineering,. 2001. Bethesda, Maryland.
    • C., T., et al. Interrelated two-way clustering: An unsupervised approach for gene expression data analysis, in Proceeding of BIBE2001: 2nd IEEE International Symposium on Bioinformatics and Bioengineering,. 2001. Bethesda, Maryland.
  • 15
    • 0032729435 scopus 로고    scopus 로고
    • Exploring Expression Data: Identification and Analysis of Coexpressed Genes
    • Heyer, L.J., S. Kruglyak, and Y. S., Exploring Expression Data: Identification and Analysis of Coexpressed Genes. Genome Res, 1999.
    • (1999) Genome Res
    • Heyer, L.J.1    Kruglyak, S.2    Yooseph, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.