-
1
-
-
0042377235
-
Constrained k-means clustering with back ground knowledge
-
Carla Brodley and Andrea Danyluk, editors, San Francisco, CA, Morgan Kaufmann
-
Kiri Wagstaff, Claire Cardie, Seth Rogers, and Stefan Schroedl. Constrained k-means clustering with back ground knowledge. In Carla Brodley and Andrea Danyluk, editors, Proceeding of the 17th International Conference on Machine Learning, San Francisco, CA, 2001. Morgan Kaufmann.
-
(2001)
Proceeding of the 17th International Conference on Machine Learning
-
-
Wagstaff, K.1
Cardie, C.2
Rogers, S.3
Schroedl, S.4
-
2
-
-
38049108303
-
Structuring continuous video recordings of everyday life using time-constrained clustering
-
San Jose, CA, January
-
Wei-Hao Lin and Alexander Hauptmann. Structuring continuous video recordings of everyday life using time-constrained clustering. In IS&T/SPIE Symposium on Electronic Imaging, San Jose, CA, January 2006.
-
(2006)
IS&T/SPIE Symposium on Electronic Imaging
-
-
Lin, W.-H.1
Hauptmann, A.2
-
4
-
-
84880095768
-
Clustering with constraints: Feasibility issues and the k-means algorithm
-
Ian Davidson and S. S. Ravi. Clustering with constraints: Feasibility issues and the k-means algorithm. In 5th SIAM Data Mining Conference, 2005.
-
(2005)
5th SIAM Data Mining Conference
-
-
Davidson, I.1
Ravi, S.S.2
-
6
-
-
9444230302
-
Semi-supervised clustering with user feedback
-
Technical report, Cornell University, TR2003-1892
-
David Cohn, Rich Caruana, and Andrew McCallum. Semi-supervised clustering with user feedback. Technical report, Cornell University, 2003. TR2003-1892.
-
(2003)
-
-
Cohn, D.1
Caruana, R.2
McCallum, A.3
-
7
-
-
12244300524
-
A probabilistic framework for semi-supervised clustering
-
Won Kim, Ron Kohavi, Johannes Gehrke, and William DuMouchel, editors, Seattle, WA, August, ACM
-
Sugato Basu, Mikhail Bilenko, and Raymond J. Mooney. A probabilistic framework for semi-supervised clustering. In Won Kim, Ron Kohavi, Johannes Gehrke, and William DuMouchel, editors, Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 5968, Seattle, WA, August 2004. ACM.
-
(2004)
Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 5968
-
-
Basu, S.1
Bilenko, M.2
Mooney, R.J.3
-
8
-
-
37149035843
-
Clustering with constraints: Theory and practice
-
Sugato Basu and Ian Davidson. Clustering with constraints: Theory and practice. Online Proceedings of a KDD tutorial, 2006. http://www.ai.sri.com/ ~basu/kdd-tutorial-2006/.
-
(2006)
Online Proceedings of a KDD tutorial
-
-
Basu, S.1
Davidson, I.2
-
10
-
-
11944253901
-
-
2nd ed, Cambridge University Press
-
Bella Bollobás. Random Graphs (2nd ed.). Cambridge University Press, 2001.
-
(2001)
Random Graphs
-
-
Bollobás, B.1
-
13
-
-
38049121185
-
k-means with large and noisy constraint sets
-
Dan Pelleg and Dorit Baras, k-means with large and noisy constraint sets. In ECML, pages 674-682, 2007.
-
(2007)
ECML
, pp. 674-682
-
-
Pelleg, D.1
Baras, D.2
|