-
1
-
-
34547186223
-
Characterization of Riesz and Bessel potentials on variable Lebesgue spaces
-
A. ALMEIDA AND S. SAMKO, Characterization of Riesz and Bessel potentials on variable Lebesgue spaces, J. Funct. Spaces Appl. 4(2) (2006), 113-144.
-
(2006)
J. Funct. Spaces Appl
, vol.4
, Issue.2
, pp. 113-144
-
-
ALMEIDA, A.1
SAMKO, S.2
-
2
-
-
34547194180
-
Pointwise inequalities in variable Sobolev spaces and applications
-
A. ALMEIDA AND S. SAMKO, Pointwise inequalities in variable Sobolev spaces and applications, Z. Anal. Anwend. 26(2) (2007), 179-193.
-
(2007)
Z. Anal. Anwend
, vol.26
, Issue.2
, pp. 179-193
-
-
ALMEIDA, A.1
SAMKO, S.2
-
3
-
-
52649122628
-
-
B. BOJARSKI, Remarks on Sobolev imbedding inequalities, in: Complex analysis (Joensuu 1987), Lecture Notes in Math. 1351, Springer, Berlin, 1988, pp. 52-68.
-
B. BOJARSKI, Remarks on Sobolev imbedding inequalities, in: "Complex analysis" (Joensuu 1987), Lecture Notes in Math. 1351, Springer, Berlin, 1988, pp. 52-68.
-
-
-
-
4
-
-
52649098359
-
On the Sobolev-type inequality for Lebesgue spaces with a variable exponent
-
B. CEKIC, R. MASHIYEV, AND G. T. ALISOY, On the Sobolev-type inequality for Lebesgue spaces with a variable exponent, Int. Math. Forum 1 (2006), no. 25-28, 1313-1323.
-
(2006)
Int. Math. Forum
, vol.1
, Issue.25-28
, pp. 1313-1323
-
-
CEKIC, B.1
MASHIYEV, R.2
ALISOY, G.T.3
-
7
-
-
2642523897
-
Maximal function on generalized Lebesgue spaces Lp(.)
-
p(.) Math. Inequal. Appl. 7(2) (2004), 245-253.
-
(2004)
Math. Inequal. Appl
, vol.7
, Issue.2
, pp. 245-253
-
-
DIENING, L.1
-
8
-
-
4544323976
-
p(.) and W k,p(.)
-
k,p(.) Math. Nachr. 268 (2004), 31-43.
-
(2004)
Math. Nachr
, vol.268
, pp. 31-43
-
-
DIENING, L.1
-
9
-
-
52649145206
-
Maximal functions in variable exponent spaces: Limiting cases of the exponent
-
Preprint
-
L. DIENING, P. HARJULEHTO, P. HÄSTÖ, Y. MIZUTA, AND T. SHIMOMURA, Maximal functions in variable exponent spaces: limiting cases of the exponent, Preprint (2007).
-
(2007)
-
-
DIENING, L.1
HARJULEHTO, P.2
HÄSTÖ, P.3
MIZUTA, Y.4
SHIMOMURA, T.5
-
10
-
-
52649124706
-
-
L. DIENING, P. HÄSTÖ, AND A. NEKVINDA, Open problems in variable exponent Lebesgue and Sobolev spaces, in: FSDONA04 Proceedings (Drabek and Rákosník (eds.); Milovy, Czech Republic, 2004), Academy of Sciences of the Czech Republic, Prague, 2005, pp. 38-58.
-
L. DIENING, P. HÄSTÖ, AND A. NEKVINDA, Open problems in variable exponent Lebesgue and Sobolev spaces, in: "FSDONA04 Proceedings" (Drabek and Rákosník (eds.); Milovy, Czech Republic, 2004), Academy of Sciences of the Czech Republic, Prague, 2005, pp. 38-58.
-
-
-
-
11
-
-
0001385278
-
Sobolev embeddings with variable exponent
-
D. E. EDMUNDS AND J. RÁKOSNÍK, Sobolev embeddings with variable exponent, Studia Math. 143(3) (2000), 267-293.
-
(2000)
Studia Math
, vol.143
, Issue.3
, pp. 267-293
-
-
EDMUNDS, D.E.1
RÁKOSNÍK, J.2
-
12
-
-
18744420357
-
Sobolev embeddings with variable exponent. II
-
D. E. EDMUNDS AND J. RÁKOSNÍK, Sobolev embeddings with variable exponent. II, Math. Nachr. 246/247 (2002), 53-67.
-
(2002)
Math. Nachr
, vol.246-247
, pp. 53-67
-
-
EDMUNDS, D.E.1
RÁKOSNÍK, J.2
-
13
-
-
33846554976
-
Sobolev embeddings for variable exponent Riesz potentials on metric spaces
-
T. FUTAMURA, Y. MIZUTA, AND T. SHIMOMURA, Sobolev embeddings for variable exponent Riesz potentials on metric spaces, Ann. Acad. Sci. Fenn. Math. 31(2) (2006), 495-522.
-
(2006)
Ann. Acad. Sci. Fenn. Math
, vol.31
, Issue.2
, pp. 495-522
-
-
FUTAMURA, T.1
MIZUTA, Y.2
SHIMOMURA, T.3
-
15
-
-
27644465907
-
A capacity approach to the Poincaré inequality and Sobolev imbeddings in variable exponent Sobolev spaces
-
P. HARJULEHTO AND P. HÄSTÖ, A capacity approach to the Poincaré inequality and Sobolev imbeddings in variable exponent Sobolev spaces, Rev. Mat. Complut. 17(1) (2004), 129-146.
-
(2004)
Rev. Mat. Complut
, vol.17
, Issue.1
, pp. 129-146
-
-
HARJULEHTO, P.1
HÄSTÖ, P.2
-
16
-
-
33748530360
-
Sobolev embeddings in metric measure spaces with variable dimension
-
P. HARJULEHTO, P. HÄSTÖ, AND V. LATVALA, Sobolev embeddings in metric measure spaces with variable dimension, Math. Z. 254(3) (2006), 591-609.
-
(2006)
Math. Z
, vol.254
, Issue.3
, pp. 591-609
-
-
HARJULEHTO, P.1
HÄSTÖ, P.2
LATVALA, V.3
-
17
-
-
38649116003
-
Minimizers of the variable exponent, non-uniformly convex Dirichlet energy
-
P. HARJULEHTO, P. HÄSTÖ, AND V. LATVALA, Minimizers of the variable exponent, non-uniformly convex Dirichlet energy, J. Math. Pures Appl. (9) 89(2) (2008), 174-197.
-
(2008)
J. Math. Pures Appl. (9)
, vol.89
, Issue.2
, pp. 174-197
-
-
HARJULEHTO, P.1
HÄSTÖ, P.2
LATVALA, V.3
-
18
-
-
85035060141
-
Variable exponent Lebesgue spaces on metric spaces: The Hardy-Littlewood maximal operator
-
P. HARJULEHTO, P. HÄSTÖ, AND M. PERE, Variable exponent Lebesgue spaces on metric spaces: the Hardy-Littlewood maximal operator, Real Anal. Exchange 30(1) (2004/05), 87-103.
-
(2005)
Real Anal. Exchange
, vol.30
, Issue.1
, pp. 87-103
-
-
HARJULEHTO, P.1
HÄSTÖ, P.2
PERE, M.3
-
19
-
-
84968517735
-
On certain convolution inequalities
-
L. I. HEDBERG, On certain convolution inequalities, Proc. Amer. Math. Soc. 36 (1972), 505-510.
-
(1972)
Proc. Amer. Math. Soc
, vol.36
, pp. 505-510
-
-
HEDBERG, L.I.1
-
20
-
-
1342283933
-
On Sobolev theorem for Riesz-type potentials in Lebesgue spaces with variable exponent
-
V. KOKILASHVILI AND S. SAMKO, On Sobolev theorem for Riesz-type potentials in Lebesgue spaces with variable exponent, Z. Anal. Anwendungen 22(4) (2003), 899-910.
-
(2003)
Z. Anal. Anwendungen
, vol.22
, Issue.4
, pp. 899-910
-
-
KOKILASHVILI, V.1
SAMKO, S.2
-
21
-
-
52649155861
-
-
k,p(x), Czechoslovak Math. J. 41(116) (1991), no. 4, 592-618.
-
k,p(x), Czechoslovak Math. J. 41(116) (1991), no. 4, 592-618.
-
-
-
-
22
-
-
0001552241
-
John domains, bi-Lipschitz balls and Poincaré inequality
-
O. MARTIO, John domains, bi-Lipschitz balls and Poincaré inequality, Rev. Roumaine Math. Pures Appl. 33(1-2) (1988), 107-112.
-
(1988)
Rev. Roumaine Math. Pures Appl
, vol.33
, Issue.1-2
, pp. 107-112
-
-
MARTIO, O.1
-
24
-
-
24744459050
-
Sobolev's inequality for Riesz potentials with variable exponent satisfying a log-Hölder condition at infinity
-
Y. MIZUTA AND T. SHIMOMURA, Sobolev's inequality for Riesz potentials with variable exponent satisfying a log-Hölder condition at infinity, J. Math. Anal. Appl. 311(1) (2005), 268-288.
-
(2005)
J. Math. Anal. Appl
, vol.311
, Issue.1
, pp. 268-288
-
-
MIZUTA, Y.1
SHIMOMURA, T.2
-
25
-
-
0003311060
-
Orlicz spaces and modular spaces
-
Springer-Verlag, Berlin
-
J. MUSIELAK, "Orlicz spaces and modular spaces", Lecture Notes in Mathematics 1034, Springer-Verlag, Berlin, 1983.
-
(1983)
Lecture Notes in Mathematics
, vol.1034
-
-
MUSIELAK, J.1
-
26
-
-
0037932530
-
p(x) on which the Hardy-Littlewood maximal operator is not bounded
-
p(x) on which the Hardy-Littlewood maximal operator is not bounded, Expo. Math. 19(4) (2001), 369-371.
-
(2001)
Expo. Math
, vol.19
, Issue.4
, pp. 369-371
-
-
PICK, L.1
RŮŽICKA, M.2
-
27
-
-
27844475999
-
On a progress in the theory of Lebesgue spaces with variable exponent: Maximal and singular operators
-
S. SAMKO, On a progress in the theory of Lebesgue spaces with variable exponent: maximal and singular operators, Integral Transforms Spec. Funct. 16(5-6) (2005), 461-482.
-
(2005)
Integral Transforms Spec. Funct
, vol.16
, Issue.5-6
, pp. 461-482
-
-
SAMKO, S.1
-
28
-
-
33750326642
-
Weighted Sobolev theorem with variable exponent for spatial and spherical potential operators. II
-
S. SAMKO, E. SHARGORODSKY, AND B. VAKULOV, Weighted Sobolev theorem with variable exponent for spatial and spherical potential operators. II, J. Math. Anal. Appl. 325(1) (2007), 745-751.
-
(2007)
J. Math. Anal. Appl
, vol.325
, Issue.1
, pp. 745-751
-
-
SAMKO, S.1
SHARGORODSKY, E.2
VAKULOV, B.3
|