-
1
-
-
0036768849
-
Regularity results for stationary electrorheological fluids
-
ACERBI, E., and G. MINGIONE: Regularity results for stationary electrorheological fluids. - Arch. Rational Mech. Anal. 164, 2002, 213-259.
-
(2002)
Arch. Rational Mech. Anal.
, vol.164
, pp. 213-259
-
-
Acerbi, E.1
Mingione, G.2
-
2
-
-
84913540238
-
The structure of the reverse Hölder classes
-
CRUZ-URIBE, D., and C.J. NEUGEBAUER: The structure of the reverse Hölder classes. - Trans. Amer. Math. Soc. 347, 1995, 2941-2960.
-
(1995)
Trans. Amer. Math. Soc.
, vol.347
, pp. 2941-2960
-
-
Cruz-Uribe, D.1
Neugebauer, C.J.2
-
4
-
-
0038269823
-
-
University of Freiburg, preprint
-
k,p(x). - University of Freiburg, preprint, 2002.
-
(2002)
k,p(x)
-
-
Diening, L.1
-
5
-
-
0011370069
-
Fourier analysis
-
Amer. Math. Soc., Providence
-
DUOANDIKOETXEA, J.: Fourier Analysis. - Grad. Stud. Math. 29, Amer. Math. Soc., Providence, 2000.
-
(2000)
Grad. Stud. Math.
, vol.29
-
-
Duoandikoetxea, J.1
-
7
-
-
0001385278
-
Sobolev embeddings with variable exponent
-
EDMUNDS, D., and J. RÁKOSNÍK: Sobolev embeddings with variable exponent. - Studia Math. 143, 2000, 267-293.
-
(2000)
Studia Math.
, vol.143
, pp. 267-293
-
-
Edmunds, D.1
Rákosník, J.2
-
8
-
-
0034148922
-
The quasi-minimizer of integral functionals with m(x) growth conditions
-
FAN, X., and D. ZHAO: The quasi-minimizer of integral functionals with m(x) growth conditions. - Nonlinear Anal. 39, 2000, 807-816.
-
(2000)
Nonlinear Anal.
, vol.39
, pp. 807-816
-
-
Fan, X.1
Zhao, D.2
-
10
-
-
0036689575
-
A mean continuity type result for certain Sobolev spaces with variable exponent
-
FIORENZA, A.: A mean continuity type result for certain Sobolev spaces with variable exponent. - Comm. Contemp. Math. 4, 2002, 587-605.
-
(2002)
Comm. Contemp. Math.
, vol.4
, pp. 587-605
-
-
Fiorenza, A.1
-
11
-
-
84963186159
-
Some remarks on the regularity of minima of anisotropic integrals
-
Fusco, N., and C. SBORDONE: Some remarks on the regularity of minima of anisotropic integrals. - Comm. Partial Differential Equations 18, 1993, 153-167.
-
(1993)
Comm. Partial Differential Equations
, vol.18
, pp. 153-167
-
-
Fusco, N.1
Sbordone, C.2
-
12
-
-
0001686552
-
Growth conditions and regularity, a counter-example
-
GIAQUINTA, M.: Growth conditions and regularity, a counter-example. - Manuscripta Math. 59, 1987, 245-248.
-
(1987)
Manuscripta Math.
, vol.59
, pp. 245-248
-
-
Giaquinta, M.1
-
13
-
-
0002145574
-
On generalized Orlicz-Sobolev space
-
HUDZIK, H.: On generalized Orlicz-Sobolev space. - Funct. Approx. Comment. Math. 4, 1976, 37-51.
-
(1976)
Funct. Approx. Comment. Math.
, vol.4
, pp. 37-51
-
-
Hudzik, H.1
-
15
-
-
0001161282
-
k,p(x)
-
k,p(x). - Czechoslovak Math. J. 41(116), 1991, 4, 592-618.
-
(1991)
Czechoslovak Math. J.
, vol.41
, Issue.116
, pp. 4
-
-
Kováčik, O.1
Rákosník, J.2
-
16
-
-
0001196870
-
Regularity of minimizers of integrals of the calculus of variations with nonstandard growth conditions
-
MARCELLINI, P.: Regularity of minimizers of integrals of the calculus of variations with nonstandard growth conditions. - Arch. Rational Mech. Anal. 105, 1989, 267-284.
-
(1989)
Arch. Rational Mech. Anal.
, vol.105
, pp. 267-284
-
-
Marcellini, P.1
-
17
-
-
0001812746
-
Regularity and existence of solutions of elliptic equations with p, q-growth conditions
-
MARCELLINI, P.: Regularity and existence of solutions of elliptic equations with p, q-growth conditions. - J. Differential Equations 90, 1991, 1-30.
-
(1991)
J. Differential Equations
, vol.90
, pp. 1-30
-
-
Marcellini, P.1
-
18
-
-
0003311060
-
Orlicz spaces and modular spaces
-
Springer-Verlag, Berlin
-
MUSIELAK, J.: Orlicz Spaces and Modular Spaces. - Lecture Notes in Math. 1034, Springer-Verlag, Berlin, 1983.
-
(1983)
Lecture Notes in Math.
, vol.1034
-
-
Musielak, J.1
-
19
-
-
33645534682
-
-
Mathematical Preprints: 02/02, Faculty of Civil Engineering, CTU, Prague, May
-
n). - Mathematical Preprints: 02/02, Faculty of Civil Engineering, CTU, Prague, May 2002.
-
(2002)
n)
-
-
Nekvinda, A.1
-
20
-
-
0037932530
-
p(x) on which the Hardy-Littlewood maximal operator is not bounded
-
p(x) on which the Hardy-Littlewood maximal operator is not bounded. - Exposition. Math. 4, 2001, 369-372.
-
(2001)
Exposition. Math.
, vol.4
, pp. 369-372
-
-
Pick, L.1
Růžička, M.2
-
21
-
-
0003196293
-
Electrorheological fluids: Modeling and mathematical theory
-
Springer-Verlag, Berlin
-
RŮŽIČKA, M.: Electrorheological Fluids: Modeling and Mathematical Theory. - Lecture Notes in Math. 1748, Springer-Verlag, Berlin, 2000.
-
(2000)
Lecture Notes in Math.
, vol.1748
-
-
Růžička, M.1
-
22
-
-
0038269821
-
n)
-
Russian
-
n). - Dokl. Akad. Nauk 369, 1999, 451-454 (Russian); English transi.: Dokl. Math. 60, 1999, 382-385.
-
(1999)
Dokl. Akad. Nauk
, vol.369
, pp. 451-454
-
-
Samko, S.G.1
-
23
-
-
0001196501
-
-
English transi
-
n ). - Dokl. Akad. Nauk 369, 1999, 451-454 (Russian); English transi.: Dokl. Math. 60, 1999, 382-385.
-
(1999)
Dokl. Math.
, vol.60
, pp. 382-385
-
-
-
25
-
-
0037594642
-
Averaging of functionals of the calculus of variations and elasticity theory
-
Russian
-
ZHIKOV, V. V.: Averaging of functionals of the calculus of variations and elasticity theory. - Izv. Akad. Nauk SSSR Ser. Mat. 50, 1986, 675-710, 877 (Russian).
-
(1986)
Izv. Akad. Nauk SSSR Ser. Mat.
, vol.50
, pp. 675-710
-
-
Zhikov, V.V.1
|