메뉴 건너뛰기




Volumn , Issue , 2008, Pages 4517-4522

Bayesian online multi-task learning using regularization networks

Author keywords

Bayesian estimation; Kalman filtering; Kernel methods; Machine learning; Multi task learning; Regularization

Indexed keywords

BAYESIAN NETWORKS; CHLORINE COMPOUNDS; CLUSTER ANALYSIS; COMPUTATIONAL COMPLEXITY; EDUCATION; ESTIMATION; INFORMATION ANALYSIS; INTERNET; LEARNING SYSTEMS; RANDOM VARIABLES; STANDARDS;

EID: 52449090488     PISSN: 07431619     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ACC.2008.4587207     Document Type: Conference Paper
Times cited : (3)

References (23)
  • 1
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • T. Poggio and F. Girosi. Networks for approximation and learning. In Proc. IEEE, volume 7, pages 1481-1497, 1990.
    • (1990) Proc. IEEE , vol.7 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 2
    • 52449087727 scopus 로고    scopus 로고
    • F. Ferrazzi, P. Magni, and R. Bellazzi. Bayesian clustering of gene expression time series. In Proc. of 3rd Int. Workshop on Bioinformatics for the Management, Analysis and Interpretation of Microarray Data (NETTAB 2003), pages 53-55, 2003.
    • F. Ferrazzi, P. Magni, and R. Bellazzi. Bayesian clustering of gene expression time series. In Proc. of 3rd Int. Workshop on Bioinformatics for the Management, Analysis and Interpretation of Microarray Data (NETTAB 2003), pages 53-55, 2003.
  • 3
    • 0021269554 scopus 로고
    • The population approach to pharmacokinetic data analysis: Rationale and standard data analysis methods
    • L. B. Sheiner. The population approach to pharmacokinetic data analysis: rationale and standard data analysis methods. Drug Metabolism Reviews, 15:153-171, 1994.
    • (1994) Drug Metabolism Reviews , vol.15 , pp. 153-171
    • Sheiner, L.B.1
  • 6
    • 0017688679 scopus 로고
    • Estimation of population characteristics of pharmacokinetic parameters from routine clinical data
    • L. B. Sheiner, B. Rosenberg, and V. V. Marathe. Estimation of population characteristics of pharmacokinetic parameters from routine clinical data. J. Pharmacokin. Biopharm., 5(5):445-479, 1977.
    • (1977) J. Pharmacokin. Biopharm , vol.5 , Issue.5 , pp. 445-479
    • Sheiner, L.B.1    Rosenberg, B.2    Marathe, V.V.3
  • 7
    • 0003747347 scopus 로고
    • NONMEM Project Group, University of California, San Francisco
    • S. Beal and L. Sheiner. NONMEM User's Guide. NONMEM Project Group, University of California, San Francisco, 1992.
    • (1992) NONMEM User's Guide
    • Beal, S.1    Sheiner, L.2
  • 8
    • 4243839021 scopus 로고
    • Bayesian analysis of linear and non-linear population models by using the Gibbs sampler
    • J. C. Wakefield, A. F. M. Smith, A. Racine-Poon, and A. E. Gelfand. Bayesian analysis of linear and non-linear population models by using the Gibbs sampler. Applied Statistics, 41:201-221, 1994.
    • (1994) Applied Statistics , vol.41 , pp. 201-221
    • Wakefield, J.C.1    Smith, A.F.M.2    Racine-Poon, A.3    Gelfand, A.E.4
  • 10
    • 0038505133 scopus 로고    scopus 로고
    • Nonparametric AUC estimation in population studies with incomplete sampling: A Bayesian approach
    • P. Magni, R. Bellazzi, G. De Nicolao, I. Poggesi, and M. Rocchetti. Nonparametric AUC estimation in population studies with incomplete sampling: a Bayesian approach. J. Pharmacokin. Pharmacodyn., 29(5/6):445-471, 2002.
    • (2002) J. Pharmacokin. Pharmacodyn , vol.29 , Issue.5-6 , pp. 445-471
    • Magni, P.1    Bellazzi, R.2    De Nicolao, G.3    Poggesi, I.4    Rocchetti, M.5
  • 12
    • 34249036998 scopus 로고    scopus 로고
    • Nonparametric identification of population models via Gaussian processes
    • M. Neve, G. De Nicolao, and L. Marchesi. Nonparametric identification of population models via Gaussian processes. Automatica, 43(7):1134-1144, 2007.
    • (2007) Automatica , vol.43 , Issue.7 , pp. 1134-1144
    • Neve, M.1    De Nicolao, G.2    Marchesi, L.3
  • 13
    • 0031189914 scopus 로고    scopus 로고
    • Multi-task learning
    • R. Caruana. Multi-task learning. Machine Learning, 28:41-75, 1997.
    • (1997) Machine Learning , vol.28 , pp. 41-75
    • Caruana, R.1
  • 15
    • 0346238931 scopus 로고    scopus 로고
    • Task clustering and gating for bayesian multi-task learning
    • B. Bakker and T. Heskes. Task clustering and gating for bayesian multi-task learning. Journal of Machine Learning Research, (4):83-99, 2003.
    • (2003) Journal of Machine Learning Research , vol.4 , pp. 83-99
    • Bakker, B.1    Heskes, T.2
  • 16
    • 0031187873 scopus 로고    scopus 로고
    • A bayesian/information theoretic model of learning to learn via multiple task sampling
    • J. Baxter. A bayesian/information theoretic model of learning to learn via multiple task sampling. Machine Learning, (28):7-39, 1997.
    • (1997) Machine Learning , vol.28 , pp. 7-39
    • Baxter, J.1
  • 18
    • 14544299611 scopus 로고    scopus 로고
    • On learning vector-valued functions
    • C.A. Micchelli and M. Pontil. On learning vector-valued functions. Neural Computation, 17(1):177-204, 2005.
    • (2005) Neural Computation , vol.17 , Issue.1 , pp. 177-204
    • Micchelli, C.A.1    Pontil, M.2
  • 23
    • 0004225404 scopus 로고    scopus 로고
    • Springer, New York, NY, USA
    • A. N. Shiryaev. Probability. Springer, New York, NY, USA, 1996.
    • (1996) Probability
    • Shiryaev, A.N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.