-
1
-
-
0025490985
-
Networks for approximation and learning
-
T. Poggio and F. Girosi. Networks for approximation and learning. In Proc. IEEE, volume 7, pages 1481-1497, 1990.
-
(1990)
Proc. IEEE
, vol.7
, pp. 1481-1497
-
-
Poggio, T.1
Girosi, F.2
-
2
-
-
52449087727
-
-
F. Ferrazzi, P. Magni, and R. Bellazzi. Bayesian clustering of gene expression time series. In Proc. of 3rd Int. Workshop on Bioinformatics for the Management, Analysis and Interpretation of Microarray Data (NETTAB 2003), pages 53-55, 2003.
-
F. Ferrazzi, P. Magni, and R. Bellazzi. Bayesian clustering of gene expression time series. In Proc. of 3rd Int. Workshop on Bioinformatics for the Management, Analysis and Interpretation of Microarray Data (NETTAB 2003), pages 53-55, 2003.
-
-
-
-
3
-
-
0021269554
-
The population approach to pharmacokinetic data analysis: Rationale and standard data analysis methods
-
L. B. Sheiner. The population approach to pharmacokinetic data analysis: rationale and standard data analysis methods. Drug Metabolism Reviews, 15:153-171, 1994.
-
(1994)
Drug Metabolism Reviews
, vol.15
, pp. 153-171
-
-
Sheiner, L.B.1
-
6
-
-
0017688679
-
Estimation of population characteristics of pharmacokinetic parameters from routine clinical data
-
L. B. Sheiner, B. Rosenberg, and V. V. Marathe. Estimation of population characteristics of pharmacokinetic parameters from routine clinical data. J. Pharmacokin. Biopharm., 5(5):445-479, 1977.
-
(1977)
J. Pharmacokin. Biopharm
, vol.5
, Issue.5
, pp. 445-479
-
-
Sheiner, L.B.1
Rosenberg, B.2
Marathe, V.V.3
-
7
-
-
0003747347
-
-
NONMEM Project Group, University of California, San Francisco
-
S. Beal and L. Sheiner. NONMEM User's Guide. NONMEM Project Group, University of California, San Francisco, 1992.
-
(1992)
NONMEM User's Guide
-
-
Beal, S.1
Sheiner, L.2
-
8
-
-
4243839021
-
Bayesian analysis of linear and non-linear population models by using the Gibbs sampler
-
J. C. Wakefield, A. F. M. Smith, A. Racine-Poon, and A. E. Gelfand. Bayesian analysis of linear and non-linear population models by using the Gibbs sampler. Applied Statistics, 41:201-221, 1994.
-
(1994)
Applied Statistics
, vol.41
, pp. 201-221
-
-
Wakefield, J.C.1
Smith, A.F.M.2
Racine-Poon, A.3
Gelfand, A.E.4
-
9
-
-
0036428867
-
Bayesian analysis of population PK/PD models: General concepts and software
-
D. J. Lunn, N. Best, A. Thomas, J. C. Wakefield, and D. Spiegelhalter. Bayesian analysis of population PK/PD models: general concepts and software. J. Pharmacokinet. Pharmacodyn., 29(3):271-307, 2002.
-
(2002)
J. Pharmacokinet. Pharmacodyn
, vol.29
, Issue.3
, pp. 271-307
-
-
Lunn, D.J.1
Best, N.2
Thomas, A.3
Wakefield, J.C.4
Spiegelhalter, D.5
-
10
-
-
0038505133
-
Nonparametric AUC estimation in population studies with incomplete sampling: A Bayesian approach
-
P. Magni, R. Bellazzi, G. De Nicolao, I. Poggesi, and M. Rocchetti. Nonparametric AUC estimation in population studies with incomplete sampling: a Bayesian approach. J. Pharmacokin. Pharmacodyn., 29(5/6):445-471, 2002.
-
(2002)
J. Pharmacokin. Pharmacodyn
, vol.29
, Issue.5-6
, pp. 445-471
-
-
Magni, P.1
Bellazzi, R.2
De Nicolao, G.3
Poggesi, I.4
Rocchetti, M.5
-
12
-
-
34249036998
-
Nonparametric identification of population models via Gaussian processes
-
M. Neve, G. De Nicolao, and L. Marchesi. Nonparametric identification of population models via Gaussian processes. Automatica, 43(7):1134-1144, 2007.
-
(2007)
Automatica
, vol.43
, Issue.7
, pp. 1134-1144
-
-
Neve, M.1
De Nicolao, G.2
Marchesi, L.3
-
13
-
-
0031189914
-
Multi-task learning
-
R. Caruana. Multi-task learning. Machine Learning, 28:41-75, 1997.
-
(1997)
Machine Learning
, vol.28
, pp. 41-75
-
-
Caruana, R.1
-
15
-
-
0346238931
-
Task clustering and gating for bayesian multi-task learning
-
B. Bakker and T. Heskes. Task clustering and gating for bayesian multi-task learning. Journal of Machine Learning Research, (4):83-99, 2003.
-
(2003)
Journal of Machine Learning Research
, vol.4
, pp. 83-99
-
-
Bakker, B.1
Heskes, T.2
-
16
-
-
0031187873
-
A bayesian/information theoretic model of learning to learn via multiple task sampling
-
J. Baxter. A bayesian/information theoretic model of learning to learn via multiple task sampling. Machine Learning, (28):7-39, 1997.
-
(1997)
Machine Learning
, vol.28
, pp. 7-39
-
-
Baxter, J.1
-
18
-
-
14544299611
-
On learning vector-valued functions
-
C.A. Micchelli and M. Pontil. On learning vector-valued functions. Neural Computation, 17(1):177-204, 2005.
-
(2005)
Neural Computation
, vol.17
, Issue.1
, pp. 177-204
-
-
Micchelli, C.A.1
Pontil, M.2
-
19
-
-
46449098548
-
Efficient nonparametric population modeling for large data sets
-
New York, USA
-
G. De Nicolao, G. Pillonetto, M. Chierici, and C. Cobelli. Efficient nonparametric population modeling for large data sets. In Proc. of American Control Conference, 2007, New York, USA, pages 2921-2926, 2007.
-
(2007)
Proc. of American Control Conference, 2007
, pp. 2921-2926
-
-
De Nicolao, G.1
Pillonetto, G.2
Chierici, M.3
Cobelli, C.4
-
20
-
-
84865131152
-
A generalized representer theorem
-
Portland, OR, USA
-
B. Schölkopf, R. Herbrich, and A. J. Smola. A generalized representer theorem. In Proceedings of the Annual Conference on Computational Learning Theory, pages 416-426, Portland, OR, USA, 2001.
-
(2001)
Proceedings of the Annual Conference on Computational Learning Theory
, pp. 416-426
-
-
Schölkopf, B.1
Herbrich, R.2
Smola, A.J.3
-
23
-
-
0004225404
-
-
Springer, New York, NY, USA
-
A. N. Shiryaev. Probability. Springer, New York, NY, USA, 1996.
-
(1996)
Probability
-
-
Shiryaev, A.N.1
|