-
1
-
-
84971124048
-
Harmonic balance and the Hopf bifurcation theorem
-
Allwright, D. J. [1977] "Harmonic balance and the Hopf bifurcation theorem," Math. Proc. Cambridge Philos. Soc. 82, 453-467.
-
(1977)
Math. Proc. Cambridge Philos. Soc
, vol.82
, pp. 453-467
-
-
Allwright, D.J.1
-
2
-
-
0031197307
-
A frequency method for predicting limit cycle bifurcations
-
Basso, M., Genesio, R. & Tesi, A. [1997] "A frequency method for predicting limit cycle bifurcations," Non-lin. Dyn. 13, 339-360.
-
(1997)
Non-lin. Dyn
, vol.13
, pp. 339-360
-
-
Basso, M.1
Genesio, R.2
Tesi, A.3
-
3
-
-
0036696341
-
On a generalized Lorenz canonical form of chaotic systems
-
Ĉelikoský, S. & iquest; Chen, G. [2002] "On a generalized Lorenz canonical form of chaotic systems," Int. J. Bifurcation and Chaos 12, 1789-1812.
-
(2002)
Int. J. Bifurcation and Chaos
, vol.12
, pp. 1789-1812
-
-
Ĉelikoský, S.1
iquest2
Chen, G.3
-
4
-
-
0042905229
-
Chaotifying a continuous-time system near a stable limit cycle
-
Chen, G. & Yang, L. [2003] "Chaotifying a continuous-time system near a stable limit cycle," Chaos Solit. Fract. 15, 245-253.
-
(2003)
Chaos Solit. Fract
, vol.15
, pp. 245-253
-
-
Chen, G.1
Yang, L.2
-
5
-
-
0000885387
-
Transformations of nonlinear dynamical systems to jerky motion and its application to minimal chaotic flows
-
Eichhorn, R., Linz, S. J. & Hanggi, P. [1998] "Transformations of nonlinear dynamical systems to jerky motion and its application to minimal chaotic flows," Phys. Rev. E 58, 7151-7164.
-
(1998)
Phys. Rev. E
, vol.58
, pp. 7151-7164
-
-
Eichhorn, R.1
Linz, S.J.2
Hanggi, P.3
-
6
-
-
0036028187
-
Simple polynomial classes of chaotic jerky dynamics
-
Eichhorn, R., Linz, S. J. & Hanggi, P. [2002] "Simple polynomial classes of chaotic jerky dynamics," Chaos Solit. Fract. 13, 1-15.
-
(2002)
Chaos Solit. Fract
, vol.13
, pp. 1-15
-
-
Eichhorn, R.1
Linz, S.J.2
Hanggi, P.3
-
7
-
-
0041634867
-
-
Fu, Z. & Heidel, J. [1997] Non-chaotic behavior in three-dimensional quadratic systems, Nonlinearity ([1999] Erratum, Nonlinearity 12, 739) 10, 1290-1303.
-
Fu, Z. & Heidel, J. [1997] "Non-chaotic behavior in three-dimensional quadratic systems," Nonlinearity ([1999] Erratum, Nonlinearity 12, 739) 10, 1290-1303.
-
-
-
-
8
-
-
0026866475
-
Harmonic balance approach for the analysis of chaotic dynamics in nonlinear systems
-
Genesio, R. & Tesi, A. [1992] "Harmonic balance approach for the analysis of chaotic dynamics in nonlinear systems," Automatica 28, 531-548.
-
(1992)
Automatica
, vol.28
, pp. 531-548
-
-
Genesio, R.1
Tesi, A.2
-
9
-
-
29244482010
-
On the onset of quasi-periodic solutions in third-order dynamical systems
-
Genesio, R. & Ghilardi, C. [2005] "On the onset of quasi-periodic solutions in third-order dynamical systems," Int. J. Bifurcation and Chaos 15, 3165-3180.
-
(2005)
Int. J. Bifurcation and Chaos
, vol.15
, pp. 3165-3180
-
-
Genesio, R.1
Ghilardi, C.2
-
10
-
-
0021768729
-
A model of neuronal bursting using three coupled first order differential equations
-
Hindmarsh, J. L. & Rose, R. M. [1984] "A model of neuronal bursting using three coupled first order differential equations," Proc. Royal Soc. London B 221, 87-102.
-
(1984)
Proc. Royal Soc. London B
, vol.221
, pp. 87-102
-
-
Hindmarsh, J.L.1
Rose, R.M.2
-
12
-
-
0004178386
-
-
3rd edition Prentice-Hall, Englewood Cliffs
-
Khalil, H. K. [2002] Nonlinear Systems, 3rd edition (Prentice-Hall, Englewood Cliffs).
-
(2002)
Nonlinear Systems
-
-
Khalil, H.K.1
-
14
-
-
0034626244
-
No-chaos criteria for certain jerky dynamics
-
Linz, S. J. [2000] "No-chaos criteria for certain jerky dynamics," Phys. Lett. A 275, 204-210.
-
(2000)
Phys. Lett. A
, vol.275
, pp. 204-210
-
-
Linz, S.J.1
-
15
-
-
0037246536
-
A new chaotic system and its generation
-
Liu, W. & Chen, G. [2003] "A new chaotic system and its generation," Int. J. Bifurcation and Chaos 13, 261-267.
-
(2003)
Int. J. Bifurcation and Chaos
, vol.13
, pp. 261-267
-
-
Liu, W.1
Chen, G.2
-
16
-
-
13844267806
-
A new chaotic system and beyond: The generalized Lorenz-like systems
-
Lu, J., Chen, G. & Cheng, D. [2004] "A new chaotic system and beyond: The generalized Lorenz-like systems," Int. J. Bifurcation and Chaos 14, 1507-1539.
-
(2004)
Int. J. Bifurcation and Chaos
, vol.14
, pp. 1507-1539
-
-
Lu, J.1
Chen, G.2
Cheng, D.3
-
20
-
-
33751555569
-
Some simple chaotic flows
-
Sprott, J. C. [1994] "Some simple chaotic flows," Phys. Rev. E 50, R647-R650.
-
(1994)
Phys. Rev. E
, vol.50
-
-
Sprott, J.C.1
-
21
-
-
0041322255
-
Simplest dissipative chaotic flow
-
Sprott, J. C. [1997a] "Simplest dissipative chaotic flow," Phys. Lett. A 228, 271-274.
-
(1997)
Phys. Lett. A
, vol.228
, pp. 271-274
-
-
Sprott, J.C.1
-
22
-
-
0031509406
-
Some simple chaotic jerk functions
-
Sprott, J. C. [1997b] "Some simple chaotic jerk functions," Am. J. Phys. 65, 537-543.
-
(1997)
Am. J. Phys
, vol.65
, pp. 537-543
-
-
Sprott, J.C.1
-
26
-
-
0034366942
-
Anticontrol of chaos in continuous-time systems via time-delay feedback
-
Wang, X. F., Chen, G. & Yu, X. [2000] "Anticontrol of chaos in continuous-time systems via time-delay feedback," Chaos 10, 771-779.
-
(2000)
Chaos
, vol.10
, pp. 771-779
-
-
Wang, X.F.1
Chen, G.2
Yu, X.3
-
27
-
-
0034325753
-
A technique for determining autonomous 3-D ODEs being non-chaotic
-
Yang, X.-S. [2000] "A technique for determining autonomous 3-D ODEs being non-chaotic," Chaos Solit. Fract. 11, 2313-2318.
-
(2000)
Chaos Solit. Fract
, vol.11
, pp. 2313-2318
-
-
Yang, X.-S.1
-
28
-
-
0942266242
-
A simple smooth chaotic system with a 3-layer attractor
-
Zhou, T. S. & Chen, G. [2004a] "A simple smooth chaotic system with a 3-layer attractor," Int. J. Bifurcation and Chaos 14, 1795-1799.
-
(2004)
Int. J. Bifurcation and Chaos
, vol.14
, pp. 1795-1799
-
-
Zhou, T.S.1
Chen, G.2
-
30
-
-
37849184991
-
Classification of chaos in 3-D continuous quadratic systems
-
Zhou, T. S. & Chen, G. [2006] "Classification of chaos in 3-D continuous quadratic systems," Int. J. Bifurcation and Chaos 16, 2459-2479.
-
(2006)
Int. J. Bifurcation and Chaos
, vol.16
, pp. 2459-2479
-
-
Zhou, T.S.1
Chen, G.2
|