-
1
-
-
0000863462
-
Bilinear systems and chaos
-
Čelikovský, S. & Vaněček, A. [1994] "Bilinear systems and chaos," Kybernetika 30, 403-424.
-
(1994)
Kybernetika
, vol.30
, pp. 403-424
-
-
Čelikovský, S.1
Vaněček, A.2
-
2
-
-
0036696341
-
On a generalized Lorenz canonical form of chaotic systems
-
Čelikoský, S. & Chen, G. [2002] "On a generalized Lorenz canonical form of chaotic systems," Int. J. Bifurcation and Chaos 12, 1789-1812.
-
(2002)
Int. J. Bifurcation and Chaos
, vol.12
, pp. 1789-1812
-
-
Čelikoský, S.1
Chen, G.2
-
4
-
-
0038545775
-
Chaotification via feedback: The discrete case
-
Chaos and Bifurcation Control: Theory and Applications, eds. Chen, G., Yu, X. & Hill, D. J. (Springer-Verlag, Berlin)
-
Chen, G. [2003] "Chaotification via feedback: The discrete case," in Chaos and Bifurcation Control: Theory and Applications, Vol. I: Chaos Control, eds. Chen, G., Yu, X. & Hill, D. J. (Springer-Verlag, Berlin), pp. 159-178.
-
(2003)
Chaos Control
, vol.1
, pp. 159-178
-
-
Chen, G.1
-
5
-
-
0026866475
-
Harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems
-
Genesio, R. & Tesi, A. [1992] "Harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems," Automatica 28, 531-548.
-
(1992)
Automatica
, vol.28
, pp. 531-548
-
-
Genesio, R.1
Tesi, A.2
-
6
-
-
0035532147
-
A chaos lemma
-
Kennedy, J., Kocak, S. & Yorke, J. A. [2001] "A chaos lemma," Amer. Math. Monthly 108, 411-423.
-
(2001)
Amer. Math. Monthly
, vol.108
, pp. 411-423
-
-
Kennedy, J.1
Kocak, S.2
Yorke, J.A.3
-
7
-
-
0000100336
-
Periodic three implies chaos
-
Li, T. Y. & Yorke, J. A. [1975] "Periodic three implies chaos," Amer. Math. Monthly 82, 985-992.
-
(1975)
Amer. Math. Monthly
, vol.82
, pp. 985-992
-
-
Li, T.Y.1
Yorke, J.A.2
-
8
-
-
0037246536
-
A new chaotic system and its generation
-
Liu, W. B. & Chen, G. [2003] "A new chaotic system and its generation," Int. J. Bifurcation and Chaos 13, 261-267.
-
(2003)
Int. J. Bifurcation and Chaos
, vol.13
, pp. 261-267
-
-
Liu, W.B.1
Chen, G.2
-
9
-
-
6344249919
-
Can a three-dimensional smooth autonomous quadratic chaotic system generate a single four-scroll attractor?
-
Liu, W. B. & Chen, G. [2004] "Can a three-dimensional smooth autonomous quadratic chaotic system generate a single four-scroll attractor?" Int. J. Bifurcation and Chaos 14, 1395-1403.
-
(2004)
Int. J. Bifurcation and Chaos
, vol.14
, pp. 1395-1403
-
-
Liu, W.B.1
Chen, G.2
-
10
-
-
0000241853
-
Deterministic nonperiodic flow
-
Lorenz, E. N. [1963] "Deterministic nonperiodic flow," J. Atmos. Sci. 20, 130-141.
-
(1963)
J. Atmos. Sci.
, vol.20
, pp. 130-141
-
-
Lorenz, E.N.1
-
11
-
-
49549126801
-
An equation for continuous chaos
-
Rössler, O. E. [1996] "An equation for continuous chaos," Phys. Lett. A 57, 397-398.
-
(1996)
Phys. Lett. A
, vol.57
, pp. 397-398
-
-
Rössler, O.E.1
-
12
-
-
0026791711
-
Chaos in models of double convection
-
Rucklidge, A. M. [1992] "Chaos in models of double convection," J. Fluid Mech. 237, 209-229.
-
(1992)
J. Fluid Mech.
, vol.237
, pp. 209-229
-
-
Rucklidge, A.M.1
-
13
-
-
0002048562
-
On the bifurcation of a symmetric limit cycle to an asymmetric one in a simple model
-
Shumizu, T. & Morioka, N. [1976] "On the bifurcation of a symmetric limit cycle to an asymmetric one in a simple model," Phys. Lett. A 76, 201-204.
-
(1976)
Phys. Lett. A
, vol.76
, pp. 201-204
-
-
Shumizu, T.1
Morioka, N.2
-
14
-
-
0001234956
-
A case of the existence of a countable number of periodic motions
-
translated by S. Puckette
-
Ši'lnikov, L. P. [1965] "A case of the existence of a countable number of periodic motions," Sov. Math. Docklady 6, 163-166 (translated by S. Puckette).
-
(1965)
Sov. Math. Docklady
, vol.6
, pp. 163-166
-
-
Ši'lnikov, L.P.1
-
15
-
-
84956230541
-
A contribution of the problem of the structure of an extended neighborhood of rough equilibrium state of saddle-focus type
-
translated by F. A. Cezus
-
Ši'lnikov, L. P. [1970] "A contribution of the problem of the structure of an extended neighborhood of rough equilibrium state of saddle-focus type," Math. U.S.S.R.-Shornik 10, 91-102 (translated by F. A. Cezus).
-
(1970)
Math. U.S.S.R.-Shornik
, vol.10
, pp. 91-102
-
-
Ši'lnikov, L.P.1
-
16
-
-
0027685164
-
Ši'lnikov theorem - A tutorial
-
Silva, C. P. [1993] "Ši'lnikov theorem - A tutorial," IEEE Trans. Circuit Syst.-I 40, 675-682.
-
(1993)
IEEE Trans. Circuit Syst.-I
, vol.40
, pp. 675-682
-
-
Silva, C.P.1
-
17
-
-
33751555569
-
Some simple chaotic flows
-
Sprott, J. C. [1994] "Some simple chaotic flows," Phys. Rev. E. 50, R647-R650.
-
(1994)
Phys. Rev. E
, vol.50
-
-
Sprott, J.C.1
-
18
-
-
0034374714
-
Simple chaotic systems and circuits
-
Sprott, J. C. [2000a] "Simple chaotic systems and circuits," Amer. J. Phys. 68, 758-763.
-
(2000)
Amer. J. Phys.
, vol.68
, pp. 758-763
-
-
Sprott, J.C.1
-
19
-
-
0034645889
-
A new class of chaotic circuits
-
Sprott, J. C. [2000b] "A new class of chaotic circuits," Phys. Lett. A 266, 19-23.
-
(2000)
Phys. Lett. A
, vol.266
, pp. 19-23
-
-
Sprott, J.C.1
-
21
-
-
37949028222
-
-
also abridged form in Anales l'Inst
-
also abridged form in Anales l'Inst, Heri Poincaré 49, 441-461.
-
Heri Poincaré
, vol.49
, pp. 441-461
-
-
-
22
-
-
0033563546
-
The Lorenz attractor exists
-
Tucker, W. [1999] "The Lorenz attractor exists," C. R. Acad. Paris Ser. I Math. 328, 1197-1202.
-
(1999)
C. R. Acad. Paris Ser. I Math.
, vol.328
, pp. 1197-1202
-
-
Tucker, W.1
-
23
-
-
0034238522
-
Bifurcation analysis of Chen's equation
-
Ueta, T. & Chen, G. [2000] "Bifurcation analysis of Chen's equation," Int. J. Bifurcation and Chaos 10, 1917-1931.
-
(2000)
Int. J. Bifurcation and Chaos
, vol.10
, pp. 1917-1931
-
-
Ueta, T.1
Chen, G.2
-
24
-
-
0039772222
-
Chaotification via arbitrarily small feedback control: Theory, method, and applications
-
Wang, X. P. & Chen, G. [2000] "Chaotification via arbitrarily small feedback control: Theory, method, and applications," Int. J. Bifurcation and Chaos 10, 549-570.
-
(2000)
Int. J. Bifurcation and Chaos
, vol.10
, pp. 549-570
-
-
Wang, X.P.1
Chen, G.2
-
26
-
-
0017424051
-
The structure of Lorenz attractors
-
eds. Bermard, P. & Ratiu, T. (Springer-Verlag, Berlin)
-
Williams, R. [1997] "The structure of Lorenz attractors," in Turbulence Seminar Berkeley 1996/97, eds. Bermard, P. & Ratiu, T. (Springer-Verlag, Berlin), pp. 94-112.
-
(1997)
Turbulence Seminar Berkeley 1996/97
, pp. 94-112
-
-
Williams, R.1
-
27
-
-
0242425114
-
The complex dynamical behaviors of the chaotic Chen's system
-
Zhou, T. S., Chen, G. & Tang, Y. [2003] "The complex dynamical behaviors of the chaotic Chen's system," Int. J. Bifurcation and Chaos 13, 2561-2574.
-
(2003)
Int. J. Bifurcation and Chaos
, vol.13
, pp. 2561-2574
-
-
Zhou, T.S.1
Chen, G.2
Tang, Y.3
-
28
-
-
0942266242
-
A simple smooth chaotic system with a 3-layer attractor
-
Zhou, T. S. & Chen, G. [2004a] "A simple smooth chaotic system with a 3-layer attractor," Int. J. Bifurcation and Chaos 14, 1795-1799.
-
(2004)
Int. J. Bifurcation and Chaos
, vol.14
, pp. 1795-1799
-
-
Zhou, T.S.1
Chen, G.2
-
29
-
-
0042623485
-
Constructing a new chaotic system based on Ši'lnikov criterion
-
Zhou, T. S., Chen, G. & Yang, Q. G. [2004b] "Constructing a new chaotic system based on Ši'lnikov criterion," Chaos Solit. Fract. 19, 985-993.
-
(2004)
Chaos Solit. Fract.
, vol.19
, pp. 985-993
-
-
Zhou, T.S.1
Chen, G.2
Yang, Q.G.3
-
31
-
-
0041621573
-
The complicated trajectory behaviors in the Lorenz system
-
Zhou, T. S., Liao, H. H., Zheng, Z. H. & Tang, Y. [2004d] "The complicated trajectory behaviors in the Lorenz system," Chaos Solit. Fract. 19, 863-873.
-
(2004)
Chaos Solit. Fract.
, vol.19
, pp. 863-873
-
-
Zhou, T.S.1
Liao, H.H.2
Zheng, Z.H.3
Tang, Y.4
-
32
-
-
0347355136
-
A universal unfolding of the Lorenz system
-
Zhou, T. S., Chen, G. & Tang, Y. [2004e] "A universal unfolding of the Lorenz system," Chaos Solit. Fract. 20, 979-993.
-
(2004)
Chaos Solit. Fract.
, vol.20
, pp. 979-993
-
-
Zhou, T.S.1
Chen, G.2
Tang, Y.3
-
33
-
-
15544370574
-
Ši'lnikov chaos in the generalized Lorenz cannoical form of dynamical systems
-
Zhou, T. S., Chen, G. & Cělikovsky, S. [2005] "Ši'lnikov chaos in the generalized Lorenz cannoical form of dynamical systems," Nonlin. Dyn. 39, 319-334.
-
(2005)
Nonlin. Dyn.
, vol.39
, pp. 319-334
-
-
Zhou, T.S.1
Chen, G.2
Cělikovsky, S.3
|