-
1
-
-
0034716518
-
-
Hegde, V. R.; Puar, M. S.; Dai, P.; Patel, M.; Gullo, V. P.; Das, P. R.; Bond, R. W.; McPhail, A. T. Tetrahedron Lett. 2000, 41, 1351-1354.
-
(2000)
Tetrahedron Lett
, vol.41
, pp. 1351-1354
-
-
Hegde, V.R.1
Puar, M.S.2
Dai, P.3
Patel, M.4
Gullo, V.P.5
Das, P.R.6
Bond, R.W.7
McPhail, A.T.8
-
4
-
-
1542287662
-
-
(a) Kang, E. J.; Cho, E. J.; Lee, Y. E.; Ji, M. K.; Shin, D. M.; Chung, Y. K.; Lee, E. J. Am. Chem. Soc. 2004, 126, 2680-2681.
-
(2004)
J. Am. Chem. Soc
, vol.126
, pp. 2680-2681
-
-
Kang, E.J.1
Cho, E.J.2
Lee, Y.E.3
Ji, M.K.4
Shin, D.M.5
Chung, Y.K.6
Lee, E.7
-
5
-
-
23044462557
-
-
(b) Kang, E. J.; Cho, E. J.; Ji, M. K.; Lee, Y. E.; Shin, D. M.; Choi, S. Y.; Chung, Y. K.; Kim, J.-S.; Kim, H.-J.; Lee, S.-G.; Lah, M. S.; Lee, E. J. Org. Chem. 2005, 70, 6321-6329.
-
(2005)
J. Org. Chem
, vol.70
, pp. 6321-6329
-
-
Kang, E.J.1
Cho, E.J.2
Ji, M.K.3
Lee, Y.E.4
Shin, D.M.5
Choi, S.Y.6
Chung, Y.K.7
Kim, J.-S.8
Kim, H.-J.9
Lee, S.-G.10
Lah, M.S.11
Lee, E.12
-
11
-
-
0035850819
-
-
Dolmetsch, R. E.; Pajvani, U.; Fife, K.; Spotts, J. M.; Greenberg, M. E. Science 2001, 294, 333-339.
-
(2001)
Science
, vol.294
, pp. 333-339
-
-
Dolmetsch, R.E.1
Pajvani, U.2
Fife, K.3
Spotts, J.M.4
Greenberg, M.E.5
-
13
-
-
0141520638
-
-
(b) Patterson, B.; Marumoto, S.; Rychnovsky, S. D. Org. Lett. 2003, 5, 3163-3166.
-
(2003)
Org. Lett
, vol.5
, pp. 3163-3166
-
-
Patterson, B.1
Marumoto, S.2
Rychnovsky, S.D.3
-
15
-
-
34547095744
-
-
(d) Van Orden, L. J.; Patterson, B. D.; Rychnovsky, S. D. J. Org. Chem. 2007, 72, 5784-5793.
-
(2007)
J. Org. Chem
, vol.72
, pp. 5784-5793
-
-
Van Orden, L.J.1
Patterson, B.D.2
Rychnovsky, S.D.3
-
17
-
-
0032190823
-
-
Rychnovsky, S. D.; Hu, Y. Q.; Ellsworth, B. Tetrahedron Lett. 1998, 39, 7271-7274.
-
(1998)
Tetrahedron Lett
, vol.39
, pp. 7271-7274
-
-
Rychnovsky, S.D.1
Hu, Y.Q.2
Ellsworth, B.3
-
18
-
-
0030738752
-
-
For examples of ion-templated metathesis, see: (a) Mohr, B, Weck, M, Sauvage, J.-P, Grubbs, R. H. Angew. Chem, Int. Ed. Engl. 1997, 36, 1308-1310
-
For examples of ion-templated metathesis, see: (a) Mohr, B.; Weck, M.; Sauvage, J.-P.; Grubbs, R. H. Angew. Chem., Int. Ed. Engl. 1997, 36, 1308-1310.
-
-
-
-
20
-
-
36349014793
-
-
(c) Akine, S.; Kagiyama, S.; Nabeshima, T. Inorg. Chem. 2007, 46, 9525-9527.
-
(2007)
Inorg. Chem
, vol.46
, pp. 9525-9527
-
-
Akine, S.1
Kagiyama, S.2
Nabeshima, T.3
-
21
-
-
0001488391
-
-
Keck, G. E.; Tarbet, K. H.; Geraci, L. S. J. Am. Chem. Soc. 1993, 115, 8467-8468.
-
(1993)
J. Am. Chem. Soc
, vol.115
, pp. 8467-8468
-
-
Keck, G.E.1
Tarbet, K.H.2
Geraci, L.S.3
-
23
-
-
4444271208
-
-
Takai, K.; Kunisada, Y.; Tachibana, Y.; Yamaji, N.; Nakatani, E. Bull. Chem. Soc. Jpn. 2004, 77, 1581-1586.
-
(2004)
Bull. Chem. Soc. Jpn
, vol.77
, pp. 1581-1586
-
-
Takai, K.1
Kunisada, Y.2
Tachibana, Y.3
Yamaji, N.4
Nakatani, E.5
-
29
-
-
0034115886
-
-
Gurjar, M. K.; Krishna, L. M.; Reddy, B. S.; Chorghade, M. S. Synthesis 2000, 557-560.
-
(2000)
Synthesis
, pp. 557-560
-
-
Gurjar, M.K.1
Krishna, L.M.2
Reddy, B.S.3
Chorghade, M.S.4
-
30
-
-
34547958617
-
-
The most drastic change upon formation of calcium salt 25 from the free acid is found in their 13C NMR spectra, wherein the signal for the C1 carbon of the acid (δ 180.8 ppm) disappears after exposure to CaO. Furthermore, there are noticeable changes in peak patterns for the 60-90 ppm region: the free acid exhibits six signals whereas the calcium complex 25 exhibits only five (two of the peaks have become coincident, The differences seen in the 1H NMR spectra are subtle, consisting primarily of broadening of three peaks appearing between 2.5 and 4.0 ppm. Both compounds show an identical parent molecular ion (M, Na, by ES-MS. For references regarding NMR studies of calcium coordination complexes please see: (a) Chen, C.-S, Wu, S.-H, Wu, Y.-Y, Fang, J.-M, Wu, T. H. Org. Lett. 2007, 9, 2985-2988
-
+) by ES-MS. For references regarding NMR studies of calcium coordination complexes please see: (a) Chen, C.-S.; Wu, S.-H.; Wu, Y.-Y.; Fang, J.-M.; Wu, T. H. Org. Lett. 2007, 9, 2985-2988.
-
-
-
-
31
-
-
33845468679
-
-
(b) Akine, S.; Taniguchi, T.; Nabeshima, T. J. Am. Chem. Soc. 2006, 128, 15765-15774.
-
(2006)
J. Am. Chem. Soc
, vol.128
, pp. 15765-15774
-
-
Akine, S.1
Taniguchi, T.2
Nabeshima, T.3
-
32
-
-
12944336555
-
-
(c) Akine, S.; Taniguchi, T.; Saiki, T.; Nabeshima, T. J. Am. Chem. Soc. 2005, 127, 540-541.
-
(2005)
J. Am. Chem. Soc
, vol.127
, pp. 540-541
-
-
Akine, S.1
Taniguchi, T.2
Saiki, T.3
Nabeshima, T.4
-
33
-
-
0000662227
-
-
(d) Nabeshima, T.; Takahashi, T.; Hanami, T.; Kikuchi, A.; Kawabe, T.; Yano, Y. J. Org. Chem. 1998, 63, 3802-3803.
-
(1998)
J. Org. Chem
, vol.63
, pp. 3802-3803
-
-
Nabeshima, T.1
Takahashi, T.2
Hanami, T.3
Kikuchi, A.4
Kawabe, T.5
Yano, Y.6
-
34
-
-
34247487884
-
-
(a) Stewart, I. C.; Ung, T.; Pletnev, A. A.; Berlin, J. M.; Grubbs, R. H.; Schrodi, Y. Org. Lett. 2007, 9, 1589-1592.
-
(2007)
Org. Lett
, vol.9
, pp. 1589-1592
-
-
Stewart, I.C.1
Ung, T.2
Pletnev, A.A.3
Berlin, J.M.4
Grubbs, R.H.5
Schrodi, Y.6
-
35
-
-
0034734340
-
-
(b) Garber, S. B.; Kingsbury, J. S.; Gray, B. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2000, 122, 8168-8179.
-
(2000)
J. Am. Chem. Soc
, vol.122
, pp. 8168-8179
-
-
Garber, S.B.1
Kingsbury, J.S.2
Gray, B.L.3
Hoveyda, A.H.4
-
36
-
-
0033598258
-
-
(c) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1, 953-956.
-
(1999)
Org. Lett
, vol.1
, pp. 953-956
-
-
Scholl, M.1
Ding, S.2
Lee, C.W.3
Grubbs, R.H.4
-
37
-
-
33746236970
-
-
(d) Schwab, P.; France, M. B.; Ziller, J. W.; Grubbs, R. H Angew. Chem., Int. Ed. Engl. 1995, 34, 2039-2041.
-
(1995)
Angew. Chem., Int. Ed. Engl
, vol.34
, pp. 2039-2041
-
-
Schwab, P.1
France, M.B.2
Ziller, J.W.3
Grubbs, R.H.4
-
38
-
-
4143062538
-
-
Hoye, T. R.; Jeffrey, C. S.; Tennakoon, M. A.; Wang, J.; Zhao, H. J. Am. Chem. Soc. 2004, 126, 10210-10211.
-
(2004)
J. Am. Chem. Soc
, vol.126
, pp. 10210-10211
-
-
Hoye, T.R.1
Jeffrey, C.S.2
Tennakoon, M.A.3
Wang, J.4
Zhao, H.5
-
39
-
-
59949096343
-
-
3). Both of these rotations were obtained from newly acid-equilibrated samples (ref 1). The reported rotation of synthetic (+)-SCH 351448 has varied from +22.4 to +79.9.
-
3). Both of these rotations were obtained from newly acid-equilibrated samples (ref 1). The reported rotation of synthetic (+)-SCH 351448 has varied from +22.4 to +79.9.
-
-
-
-
40
-
-
59949089227
-
-
CD spectra are provided in the Supporting Information
-
CD spectra are provided in the Supporting Information.
-
-
-
|