메뉴 건너뛰기




Volumn 57, Issue 5, 2008, Pages 521-534

A Bayesian model for longitudinal count data with non-ignorable dropout

Author keywords

Gibbs sampling; Longitudinal data; Non linear mixed effects models; Poisson outcomes; Randomized trials; Transition Markov models

Indexed keywords


EID: 52049092052     PISSN: 00359254     EISSN: 14679876     Source Type: Journal    
DOI: 10.1111/j.1467-9876.2008.00628.x     Document Type: Article
Times cited : (16)

References (35)
  • 1
    • 0033858416 scopus 로고    scopus 로고
    • Modeling repeated count data subject to informative dropout
    • Albert, P. S. and Follmann, D. A. (2000) Modeling repeated count data subject to informative dropout. Biometrics, 56, 667-677.
    • (2000) Biometrics , vol.56 , pp. 667-677
    • Albert, P.S.1    Follmann, D.A.2
  • 2
    • 0032273615 scopus 로고    scopus 로고
    • Alternative methods for monitoring convergence of iterative simulations
    • Brooks, S. P. and Gelman, A. (1998) Alternative methods for monitoring convergence of iterative simulations. J. Computnl Graph. Statist., 17, 434-455.
    • (1998) J. Computnl Graph. Statist. , vol.17 , pp. 434-455
    • Brooks, S.P.1    Gelman, A.2
  • 5
    • 0033636008 scopus 로고    scopus 로고
    • Reparameterizing the pattern mixture model for sensitivity analysis under informative dropout
    • Daniels, M. and Hogan, J. (2000) Reparameterizing the pattern mixture model for sensitivity analysis under informative dropout. Biometrics, 56, 1241-1248.
    • (2000) Biometrics , vol.56 , pp. 1241-1248
    • Daniels, M.1    Hogan, J.2
  • 6
    • 23244447184 scopus 로고    scopus 로고
    • Multiple imputation under Bayesianly smoothed pattern-mixture models for non-ignorable drop-out
    • Demirtas, H. (2005) Multiple imputation under Bayesianly smoothed pattern-mixture models for non-ignorable drop-out. Statist. Med., 24, 2345-2363.
    • (2005) Statist. Med. , vol.24 , pp. 2345-2363
    • Demirtas, H.1
  • 7
    • 0042066687 scopus 로고    scopus 로고
    • On the performance of random-coefficient pattern-mixture models for non-ignorable drop-out
    • Demirtas, H. and Schafer, I L. (2003) On the performance of random-coefficient pattern-mixture models for non-ignorable drop-out. Statist. Med., 22, 2553-2575.
    • (2003) Statist. Med. , vol.22 , pp. 2553-2575
    • Demirtas, H.1    Schafer, I.L.2
  • 9
    • 0041175330 scopus 로고    scopus 로고
    • The Muscatine children's obesity data reanalysed using pattern mixture models
    • Ekholm, H. and Skinner, C. (1998) The Muscatine children's obesity data reanalysed using pattern mixture models. Appl. Statist., 47, 251-263.
    • (1998) Appl. Statist. , vol.47 , pp. 251-263
    • Ekholm, H.1    Skinner, C.2
  • 10
    • 84950453304 scopus 로고
    • Sampling based approaches to calculate marginal densities
    • Gelfand, A. E. and Smith, A. F. M. (1990) Sampling based approaches to calculate marginal densities. J. Am. Statist. Ass., 85, 398-409.
    • (1990) J. Am. Statist. Ass. , vol.85 , pp. 398-409
    • Gelfand, A.E.1    Smith, A.F.M.2
  • 11
    • 84972492387 scopus 로고
    • Inference from iterative simulations using multiple sequences
    • Gelman, A. and Rubin, D. B. (1992) Inference from iterative simulations using multiple sequences. Statist. Sci., 7, 457-472.
    • (1992) Statist. Sci. , vol.7 , pp. 457-472
    • Gelman, A.1    Rubin, D.B.2
  • 12
    • 0003860037 scopus 로고    scopus 로고
    • Gilks, W. R., Richardson, S. and Spiegelhalter, D. J. (eds) . London: Chapman and Hall
    • Gilks, W. R., Richardson, S. and Spiegelhalter, D. J. (eds) (1996) Markov Chain Monte Carlo in Practice. London: Chapman and Hall.
    • (1996) Markov Chain Monte Carlo in Practice
  • 13
    • 10844288743 scopus 로고    scopus 로고
    • A random pattern-mixture model for longitudinal data with dropouts
    • Guo, W., Ratcliffe, S. J. and Ten Have, T. T. (2004) A random pattern-mixture model for longitudinal data with dropouts. J. Am. Statist. Ass., 99, 929-937.
    • (2004) J. Am. Statist. Ass. , vol.99 , pp. 929-937
    • Guo, W.1    Ratcliffe, S.J.2    Ten Have, T.T.3
  • 14
    • 77956890234 scopus 로고
    • Monte Carlo sampling method using Markov chains and their applications
    • Hastings, W. K. (1970) Monte Carlo sampling method using Markov chains and their applications. Biometrika, 57, 97-109.
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 15
    • 0000125534 scopus 로고
    • Sample selection bias as a specification error
    • Heckman, J. J. (1979) Sample selection bias as a specification error. Econometrica, 47, 153-162.
    • (1979) Econometrica , vol.47 , pp. 153-162
    • Heckman, J.J.1
  • 16
    • 0031032359 scopus 로고    scopus 로고
    • Mixture models for joint distribution of repeated measures and event times
    • Hogan, J. W. and Laird, N. M. (1997) Mixture models for joint distribution of repeated measures and event times. Statist. Med., 16, 239-257.
    • (1997) Statist. Med. , vol.16 , pp. 239-257
    • Hogan, J.W.1    Laird, N.M.2
  • 18
    • 33745669107 scopus 로고    scopus 로고
    • A Bayesian approach for clustered longitudinal ordinal outcome with nonignorable missing data: Evaluation of an asthma education program
    • Kaciroti, N., Raghunathan, T. E., Schork, M. A., Clark, N. M. and Gong, M. (2006) A Bayesian approach for clustered longitudinal ordinal outcome with nonignorable missing data: evaluation of an asthma education program. J. Am. Statist. Ass., 101, 435-446.
    • (2006) J. Am. Statist. Ass. , vol.101 , pp. 435-446
    • Kaciroti, N.1    Raghunathan, T.E.2    Schork, M.A.3    Clark, N.M.4    Gong, M.5
  • 19
    • 0032534724 scopus 로고    scopus 로고
    • Selection models for repeated measures with non-random dropout: An illustration of sensitivity
    • Kenward, M. G. (1998) Selection models for repeated measures with non-random dropout: an illustration of sensitivity. Statist. Med., 17, 2723-2732.
    • (1998) Statist. Med. , vol.17 , pp. 2723-2732
    • Kenward, M.G.1
  • 20
    • 0032925431 scopus 로고    scopus 로고
    • Parametric models for incomplete continuous and categorical longitudinal data
    • Kenward, M. G. and Molenberghs, G. (1999) Parametric models for incomplete continuous and categorical longitudinal data. Statist. Meth. Med. Res., 8, 51-83.
    • (1999) Statist. Meth. Med. Res. , vol.8 , pp. 51-83
    • Kenward, M.G.1    Molenberghs, G.2
  • 21
    • 1542341537 scopus 로고    scopus 로고
    • Pattern-mixture models with proper time dependence
    • Kenward, M. G., Molenberghs, G. and Thijs, H. (2003) Pattern-mixture models with proper time dependence. Biometrika, 90, 53-71.
    • (2003) Biometrika , vol.90 , pp. 53-71
    • Kenward, M.G.1    Molenberghs, G.2    Thijs, H.3
  • 22
    • 21144483152 scopus 로고
    • Pattern-mixture models for multivariate incomplete data
    • Little, R. J. A. (1993) Pattern-mixture models for multivariate incomplete data. J. Am. Statist. Ass., 88, 125-134.
    • (1993) J. Am. Statist. Ass. , vol.88 , pp. 125-134
    • Little, R.J.A.1
  • 23
    • 77956890002 scopus 로고
    • A class of pattern-mixture models for normal missing data
    • Little, R. J. A. (1994) A class of pattern-mixture models for normal missing data. Biometrika, 81, 471-483.
    • (1994) Biometrika , vol.81 , pp. 471-483
    • Little, R.J.A.1
  • 24
    • 84950452119 scopus 로고
    • Modeling the dropout mechanism in repeated measures studies
    • Little, R. J. A. (1995) Modeling the dropout mechanism in repeated measures studies. J. Am. Statist. Ass., 90, 1113-1121.
    • (1995) J. Am. Statist. Ass. , vol.90 , pp. 1113-1121
    • Little, R.J.A.1
  • 26
    • 0029995115 scopus 로고    scopus 로고
    • Pattern-mixture models for multivariate incomplete data with covariates
    • Little, R. J. A. and Wang, Y. (1996) Pattern-mixture models for multivariate incomplete data with covariates. Biometrics, 52, 98-111.
    • (1996) Biometrics , vol.52 , pp. 98-111
    • Little, R.J.A.1    Wang, Y.2
  • 29
    • 33645604591 scopus 로고    scopus 로고
    • National Center for Health Statistics . National Center for Health Statistics, Atlanta
    • National Center for Health Statistics (2002) National Health Interview Survey, 2001-2003. National Center for Health Statistics, Atlanta.
    • (2002) National Health Interview Survey, 2001-2003
  • 30
    • 0026325551 scopus 로고
    • Testing for random dropouts in repeated measurement data
    • Ridout, M. S. (1991) Testing for random dropouts in repeated measurement data. Biometrics, 47, 1617-1621.
    • (1991) Biometrics , vol.47 , pp. 1617-1621
    • Ridout, M.S.1
  • 32
    • 84950758368 scopus 로고
    • The calculation of posterior distribution by data augmentation (with discussion)
    • Tanner, M. and Wong, W. H. (1987) The calculation of posterior distribution by data augmentation (with discussion). J. Am. Statist. Ass., 82, 528-550.
    • (1987) J. Am. Statist. Ass. , vol.82 , pp. 528-550
    • Tanner, M.1    Wong, W.H.2
  • 34
    • 0023921412 scopus 로고
    • Estimation and comparison of change in presence of informative right censoring by modeling the censoring process
    • Wu, M. and Carroll, R. (1988) Estimation and comparison of change in presence of informative right censoring by modeling the censoring process. Biometrics, 44, 175-188.
    • (1988) Biometrics , vol.44 , pp. 175-188
    • Wu, M.1    Carroll, R.2
  • 35
    • 0024204207 scopus 로고
    • Markov regression models for time series: A quasi-likelihood approach
    • Zeger, S. L. and Qaqish, B. (1988) Markov regression models for time series: a quasi-likelihood approach. Biometrics, 44, 1019-1031.
    • (1988) Biometrics , vol.44 , pp. 1019-1031
    • Zeger, S.L.1    Qaqish, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.