메뉴 건너뛰기




Volumn , Issue , 2008, Pages

Context-dependent kernel design for object matching and recognition

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; BIOINFORMATICS; COMPUTER VISION; FEATURE EXTRACTION; IMAGE PROCESSING; MIXING; PATTERN RECOGNITION; SUPPORT VECTOR MACHINES;

EID: 51949103356     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2008.4587607     Document Type: Conference Paper
Times cited : (34)

References (33)
  • 2
    • 84893499976 scopus 로고    scopus 로고
    • On-line handwriting recognition with support vector machines, a kernel approach
    • C. Bahlmann, B. Haasdonk, and H. Burkhardt. On-line handwriting recognition with support vector machines, a kernel approach. IWFHR, pages 49-54, 2002.
    • (2002) IWFHR , pp. 49-54
    • Bahlmann, C.1    Haasdonk, B.2    Burkhardt, H.3
  • 3
    • 84937556341 scopus 로고    scopus 로고
    • A. Barla, F. Odone, and A. Verri. Hausdorff kernel for 3d object acquisition and detection. In Proceedings of the European conference on Computer vision LNCS 2353, pages 20-33, 2002.
    • A. Barla, F. Odone, and A. Verri. Hausdorff kernel for 3d object acquisition and detection. In Proceedings of the European conference on Computer vision LNCS 2353, pages 20-33, 2002.
  • 4
    • 0003916202 scopus 로고    scopus 로고
    • Shape context: A new descriptor for shape matching and object recognition
    • S. Belongie, J. Malik, and J. Puzicha. Shape context: A new descriptor for shape matching and object recognition. In NIPS, 2000.
    • (2000) In NIPS
    • Belongie, S.1    Malik, J.2    Puzicha, J.3
  • 5
    • 39449104740 scopus 로고    scopus 로고
    • Pattern recognition and machine learning
    • C. Bishop. Pattern recognition and machine learning. Springer, 2007.
    • (2007) Springer
    • Bishop, C.1
  • 6
    • 0026966646 scopus 로고    scopus 로고
    • B. Boser, I. Guyon, and V. Vapnik. An training algorithm for optimal margin classifiers. In Fifth Annual ACM Workshop on Computational Learning Theory, Pittsburgh, pages 144-152, 1992.
    • B. Boser, I. Guyon, and V. Vapnik. An training algorithm for optimal margin classifiers. In Fifth Annual ACM Workshop on Computational Learning Theory, Pittsburgh, pages 144-152, 1992.
  • 10
    • 51849167307 scopus 로고    scopus 로고
    • The PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results
    • M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results. http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html, 2007.
    • (2007)
    • Everingham, M.1    Van Gool, L.2    Williams, C.K.I.3    Winn, J.4    Zisserman, A.5
  • 11
    • 4444231365 scopus 로고    scopus 로고
    • A survey of kernels for structured data
    • T. Gartner. A survey of kernels for structured data. Multi Relational Data Mining, 5(1):49-58, 2003.
    • (2003) Multi Relational Data Mining , vol.5 , Issue.1 , pp. 49-58
    • Gartner, T.1
  • 12
    • 34247576789 scopus 로고    scopus 로고
    • The pyramid match kernel: Efficient learning with sets of features
    • K. Grauman and T. Darrell. The pyramid match kernel: Efficient learning with sets of features. Journal of Machine Learning Research (JMLR), 8:725-760, 2007.
    • (2007) Journal of Machine Learning Research (JMLR) , vol.8 , pp. 725-760
    • Grauman, K.1    Darrell, T.2
  • 14
    • 0004019973 scopus 로고    scopus 로고
    • Convolution kernels on discrete structures
    • Technical Report UCSCRL-99-10, UC Santa Cruz
    • D. Haussler. Convolution kernels on discrete structures. Technical Report UCSCRL-99-10, UC Santa Cruz, 1999.
    • (1999)
    • Haussler, D.1
  • 15
    • 0033289037 scopus 로고    scopus 로고
    • Using the fisher kernel method to detect remote protein homologies
    • T. Jaakkola, M. Diekhans, and D. Haussler. Using the fisher kernel method to detect remote protein homologies. ISMB, pages 149-158, 1999.
    • (1999) ISMB , pp. 149-158
    • Jaakkola, T.1    Diekhans, M.2    Haussler, D.3
  • 17
    • 1942452419 scopus 로고    scopus 로고
    • R. Kondor and T. Jebara. A kernel between sets of vectors. In proceedings of the 20th International conference on Machine Learning, 2003.
    • R. Kondor and T. Jebara. A kernel between sets of vectors. In proceedings of the 20th International conference on Machine Learning, 2003.
  • 18
    • 51949099692 scopus 로고    scopus 로고
    • S. Lazebnik, C. Schmid, and J. Ponce. Semi-local affine parts for object recognition. In British Machine Vision Conference (BMVC), 2004.
    • S. Lazebnik, C. Schmid, and J. Ponce. Semi-local affine parts for object recognition. In British Machine Vision Conference (BMVC), 2004.
  • 19
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. Lowe. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2):91-110, 2004.
    • (2004) International Journal of Computer Vision , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.1
  • 20
    • 24644504191 scopus 로고    scopus 로고
    • S. Lyu. Mercer kernels for object recognition with local features. In the proceedings of the IEEE Computer Vision and Pattern Recognition, 2005.
    • S. Lyu. Mercer kernels for object recognition with local features. In the proceedings of the IEEE Computer Vision and Pattern Recognition, 2005.
  • 21
    • 51949119278 scopus 로고    scopus 로고
    • P. Moreno, P. Ho, and N. Vasconcelos. A kullback-leibler divergence based kernel for svm classfication in multimedia applications. In Neural Information Processing Systems, 2003.
    • P. Moreno, P. Ho, and N. Vasconcelos. A kullback-leibler divergence based kernel for svm classfication in multimedia applications. In Neural Information Processing Systems, 2003.
  • 26
    • 51949118903 scopus 로고    scopus 로고
    • A. Shashua and T. Hazan. Algebraic set kernels with application to inference over local image representations. In Neural Information Processing Systems (NIPS), 2004.
    • A. Shashua and T. Hazan. Algebraic set kernels with application to inference over local image representations. In Neural Information Processing Systems (NIPS), 2004.
  • 28
    • 34547536860 scopus 로고    scopus 로고
    • K. Sim, W. Byrne, M. Gales, H. Sahbi, and P. Woodland. Consensus network decoding for statistical machine translation system combination. In the 32nd International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2007.
    • K. Sim, W. Byrne, M. Gales, H. Sahbi, and P. Woodland. Consensus network decoding for statistical machine translation system combination. In the 32nd International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2007.
  • 30
    • 33846575231 scopus 로고    scopus 로고
    • Statistical learning theory
    • Interscience Publication
    • V. N. Vapnik. Statistical learning theory. A Wiley-Interscience Publication, 1998.
    • (1998) A Wiley
    • Vapnik, V.N.1
  • 31
    • 0035680116 scopus 로고    scopus 로고
    • Rapid object detection using a boosted cascade of simple features
    • P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features. In CVPR, 2001.
    • (2001) In CVPR
    • Viola, P.1    Jones, M.2
  • 32
    • 0345414121 scopus 로고    scopus 로고
    • Recognition with local features: The kernel recipe
    • C. Wallraven, B. Caputo, and A. Graf. Recognition with local features: the kernel recipe. ICCV, pages 257-264, 2003.
    • (2003) ICCV , pp. 257-264
    • Wallraven, C.1    Caputo, B.2    Graf, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.