-
1
-
-
0021440218
-
Applications of fractional calculus to the theory of viscoelasticity
-
Koeller RC. Applications of fractional calculus to the theory of viscoelasticity. J. Appl. Mech., 1984; 51: 299-307.
-
(1984)
J. Appl. Mech
, vol.51
, pp. 299-307
-
-
Koeller, R.C.1
-
2
-
-
0031357177
-
Observer based controllers for fractional differential systems. Conference on Decision and Control SIAM
-
California
-
Matignon D, D'Andréa-Novel B. Observer based controllers for fractional differential systems. Conference on Decision and Control SIAM, IEEE-CSS, California, 1997: 4967-4972.
-
(1997)
IEEE-CSS
, pp. 4967-4972
-
-
Matignon, D.1
D'Andréa-Novel, B.2
-
4
-
-
0019444061
-
The use of control system analysis in neurophysiology of eye movements
-
Robinson DA. The use of control system analysis in neurophysiology of eye movements. Ann. Rev. Neurosci., 1981; 4: 462-503.
-
(1981)
Ann. Rev. Neurosci
, vol.4
, pp. 462-503
-
-
Robinson, D.A.1
-
6
-
-
24644436084
-
-
Jifeng W, Yuankai L. Frequency Domain Analysis and Applications for Fractional-order Control Systems. Institute of physics Publishing, Journal of Physics: Conference Series, 2005; 13: 268-273.
-
Jifeng W, Yuankai L. Frequency Domain Analysis and Applications for Fractional-order Control Systems. Institute of physics Publishing, Journal of Physics: Conference Series, 2005; 13: 268-273.
-
-
-
-
7
-
-
0010174001
-
On the realization of a constant-argument immitance or fractional operator
-
Roy S. On the realization of a constant-argument immitance or fractional operator. IEEE Trans. Circuits & Syst., 1967; 14: 264-274.
-
(1967)
IEEE Trans. Circuits & Syst
, vol.14
, pp. 264-274
-
-
Roy, S.1
-
11
-
-
0027547710
-
Simulation of power-law relaxations by analog circuits: Fractal distribution of relaxation times and non-integer exponents
-
Saito K, and Sugi M. Simulation of power-law relaxations by analog circuits: fractal distribution of relaxation times and non-integer exponents. IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 1993; E76; (2): 205-209.
-
(1993)
IEICE Trans. Fundam. Electron. Commun. Comput. Sci
, vol.E76
, Issue.2
, pp. 205-209
-
-
Saito, K.1
Sugi, M.2
-
12
-
-
0032596298
-
Simulation of fractal immittance by analog circuits: An approach to the optimized circuits
-
Sugi M, Hirano Y, Miura YF, Saito K. Simulation of fractal immittance by analog circuits: An approach to the optimized circuits. IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 1999; E82; (8): 1627-1634.
-
(1999)
IEICE Trans. Fundam. Electron. Commun. Comput. Sci
, vol.E82
, Issue.8
, pp. 1627-1634
-
-
Sugi, M.1
Hirano, Y.2
Miura, Y.F.3
Saito, K.4
-
13
-
-
0035008005
-
Non-integer-order integration by using neural networks
-
Abbisso A, Caponetto R, Fortuna L, Porto D. Non-integer-order integration by using neural networks. Proc. Int. Symp. On Circuits & Systems, 2001; 38; 688-691.
-
(2001)
Proc. Int. Symp. On Circuits & Systems
, vol.38
, pp. 688-691
-
-
Abbisso, A.1
Caponetto, R.2
Fortuna, L.3
Porto, D.4
-
14
-
-
51849165993
-
Nonlinear non-integer order circuits and systems
-
Arenta A, Caponetto R, Fortuna L, Porto D. Nonlinear non-integer order circuits and systems. World Scientific series on Nonlinear Science, series A, 2002; 38.
-
(2002)
World Scientific series on Nonlinear Science, series A
, pp. 38
-
-
Arenta, A.1
Caponetto, R.2
Fortuna, L.3
Porto, D.4
-
15
-
-
0036001911
-
Features of the phase trajectory of a fractal oscillator
-
Meilanov R. Features of the phase trajectory of a fractal oscillator. Technical Physics Lett., 2002; 28; 30-32.
-
(2002)
Technical Physics Lett
, vol.28
, pp. 30-32
-
-
Meilanov, R.1
-
16
-
-
17444415689
-
Modelling of a capacitive probe in a polarizable medium
-
Biswas K, Sen S, Dutta P. Modelling of a capacitive probe in a polarizable medium. Sens. Actuators Phys., 2005; 120: 115-122.
-
(2005)
Sens. Actuators Phys
, vol.120
, pp. 115-122
-
-
Biswas, K.1
Sen, S.2
Dutta, P.3
-
17
-
-
34047142616
-
Realization of a constant phase element and its performance study in a differentiator circuits
-
Biswas K, Sen S, Dutta P. Realization of a constant phase element and its performance study in a differentiator circuits. IEEE Circuits & Syst-II, 2006, 53; 802-806.
-
(2006)
IEEE Circuits & Syst-II
, vol.53
, pp. 802-806
-
-
Biswas, K.1
Sen, S.2
Dutta, P.3
-
18
-
-
0036507692
-
On the necessary and sufficient conditions for latch-up in sinusoidal oscillators
-
Elwakil A, Ahmed W. On the necessary and sufficient conditions for latch-up in sinusoidal oscillators. Int. J. Electronics, 2002; 89: 197-206.
-
(2002)
Int. J. Electronics
, vol.89
, pp. 197-206
-
-
Elwakil, A.1
Ahmed, W.2
-
19
-
-
0002731965
-
Stability results in fractional differential equation with applications to control processing. Proc. Multi-conference on Computational Engineering in Systems and Application IM-ICS
-
France
-
Matignon D. Stability results in fractional differential equation with applications to control processing. Proc. Multi-conference on Computational Engineering in Systems and Application IM-ICS, IEEE-SMC, France, 1996; 2: 963-968.
-
(1996)
IEEE-SMC
, vol.2
, pp. 963-968
-
-
Matignon, D.1
-
20
-
-
0001110962
-
Coprime factorizations and stability of fractional differential equations
-
Bonnet C, Partington J. Coprime factorizations and stability of fractional differential equations. Systems & Control Letts., 2000; 41: 167-174.
-
(2000)
Systems & Control Letts
, vol.41
, pp. 167-174
-
-
Bonnet, C.1
Partington, J.2
-
21
-
-
0037081673
-
Analysis of fractional differential equations
-
Diethelm K, Ford N. Analysis of fractional differential equations. J. Math. Analysis & Applic., 2002; 265: 229-248.
-
(2002)
J. Math. Analysis & Applic
, vol.265
, pp. 229-248
-
-
Diethelm, K.1
Ford, N.2
-
22
-
-
85126483725
-
-
Pi C, Peng G. Chaos in Chen's system with a fractional order. Chaos, Solitons & Fractals, 2004; 22: 443-450.
-
Pi C, Peng G. Chaos in Chen's system with a fractional order. Chaos, Solitons & Fractals, 2004; 22: 443-450.
-
-
-
-
23
-
-
47749089523
-
On the stability of linear systems with fractional-order elements
-
accepted for publication
-
Radwan A, Elwakil A, Soliman A, EL-Sedeek A. On the stability of linear systems with fractional-order elements. Chaos, Solitons & Fractals, (accepted for publication).
-
Chaos, Solitons & Fractals
-
-
Radwan, A.1
Elwakil, A.2
Soliman, A.3
EL-Sedeek, A.4
-
24
-
-
0019623026
-
Fractional-order sinusoidal oscillators-optimization and their use in highly linear FM modulation
-
Oustaloup A. Fractional-order sinusoidal oscillators-optimization and their use in highly linear FM modulation. IEEE Trans. Circuits & Syst-I, 1981; 28: 1007-1009.
-
(1981)
IEEE Trans. Circuits & Syst-I
, vol.28
, pp. 1007-1009
-
-
Oustaloup, A.1
-
25
-
-
0036649901
-
The fractional Fourier transform and harmonic oscillations
-
Kutay M, Ozaktas H. The fractional Fourier transform and harmonic oscillations. Nonlinear Dynamics, 2002; 29: 157-172.
-
(2002)
Nonlinear Dynamics
, vol.29
, pp. 157-172
-
-
Kutay, M.1
Ozaktas, H.2
|