-
2
-
-
0036295450
-
Deviation of capacitive and inductive loops in the electrochemical impedance of a dissolving iron electrode
-
M. Itagaki, A. Taya, K. Watanabe, and K. Noda, “Deviation of capacitive and inductive loops in the electrochemical impedance of a dissolving iron electrode Jpn. Soc. Anal. Chem., vol. 18, pp. 641–644, 2002.
-
(2002)
Jpn. Soc. Anal. Chem.
, vol.18
, pp. 641-644
-
-
Itagaki, M.1
Taya, A.2
Watanabe, K.3
Noda, K.4
-
3
-
-
0031996857
-
On the electrical capacitance of interfaces exhibiting constant phase element behavior
-
P. Zoltowski, “On the electrical capacitance of interfaces exhibiting constant phase element behavior,” J. Electroanal. Chem., vol. 443, pp. 149–154, 1998.
-
(1998)
J. Electroanal. Chem.
, vol.443
, pp. 149-154
-
-
Zoltowski, P.1
-
4
-
-
0032118728
-
Impedance of constant phase element cpe-blocked diffusion in film electrodes
-
J. Bisquert, G. Garcia-Belmonte, P. Bueno, E. Longo, and L. O. S. Bulhoes, “Impedance of constant phase element cpe-blocked diffusion in film electrodes,” J. Electroanal. Chem., vol. 452, pp. 229-234,1998.
-
(1998)
J. Electroanal. Chem.
, vol.452
, pp. 229-234
-
-
Bisquert, J.1
Garcia-Belmonte, G.2
Bueno, P.3
Longo, E.4
Bulhoes, L.O.S.5
-
5
-
-
0029333813
-
Construction and destruction of passivating layer on Lixc6 in organic electrolytes: An impedance study
-
P. Liu and H. Wu, “Construction and destruction of passivating layer on Lixc6 in organic electrolytes: An impedance study,” J. Power Sources, vol. 56, pp. 81–85, 1995.
-
(1995)
J. Power Sources
, vol.56
, pp. 81-85
-
-
Liu, P.1
Wu, H.2
-
6
-
-
0141996370
-
A method for modelling and simulation of fractional systems
-
T. Poinot and J. Trigeassou, “A method for modelling and simulation of fractional systems,” Signal Process., vol. 83, pp. 2319–2333, 2003.
-
(2003)
Signal Process.
, vol.83
, pp. 2319-2333
-
-
Poinot, T.1
Trigeassou, J.2
-
7
-
-
0032178810
-
Identification of linear time invariant diffusion phenomena
-
Oct.
-
R. Pintelon, “Identification of linear time invariant diffusion phenomena,” IEEE Trans. Instrum. Meas., vol. 47, pp. 1053–1055, Oct. 1998.
-
(1998)
IEEE Trans. Instrum. Meas.
, vol.47
, pp. 1053-1055
-
-
Pintelon, R.1
-
8
-
-
0001718731
-
Doubling exponent models for the analysis of porous film electrodes by impedance: Relaxation of Tio2 nanoporous in aqueous solution
-
J. Bisquert, G. Garcia-Belmonte, F. Fabregat-Santiago, N. S. Ferriols, P. Bogdanoff, and E. C. Pereira, “Doubling exponent models for the analysis of porous film electrodes by impedance: Relaxation of Tio2 nanoporous in aqueous solution,” J. Phys. Chem., vol. 104, pp. 2287–2298, 2000.
-
(2000)
J. Phys. Chem.
, vol.104
, pp. 2287-2298
-
-
Bisquert, J.1
Garcia-Belmonte, G.2
Fabregat-Santiago, F.3
Ferriols, N.S.4
Bogdanoff, P.5
Pereira, E.C.6
-
10
-
-
0033888365
-
Frequency-band complex noninteger differentiator: Characterization and synthesis
-
Jan.
-
A. Oustaloup, F. Levron, B. Mathieu, and F. M. Nanot, “Frequency-band complex noninteger differentiator: Characterization and synthesis,” IEEE Trans. Circuit Syst., Fundam. Theory Appl., vol. 47, no. 1, pp. 25–39, Jan. 2000.
-
(2000)
IEEE Trans. Circuit Syst., Fundam. Theory Appl.
, vol.47
, Issue.1
, pp. 25-39
-
-
Oustaloup, A.1
Levron, F.2
Mathieu, B.3
Nanot, F.M.4
-
11
-
-
9744279128
-
Robust filtering for discrete nonlinear fractional transformation systems
-
Nov.
-
N. T. Hoang, H. D. Tuan, P. Apkarian, and S. Hosoe, “Robust filtering for discrete nonlinear fractional transformation systems,” IEEE Trans. Circuit Syst. II, Exp. Brief, vol. 51, no. 11, pp. 587–592, Nov. 2004.
-
(2004)
IEEE Trans. Circuit Syst. II, Exp. Brief
, vol.51
, Issue.11
, pp. 587-592
-
-
Hoang, N.T.1
Tuan, H.D.2
Apkarian, P.3
Hosoe, S.4
-
12
-
-
0141927230
-
Fractional differentiation for edge detection
-
B. Mathieu, P. Melchior, A. Oustaloup, and C. Ceryal, “Fractional differentiation for edge detection,” Signal Process., vol. 83, pp. 2421–2432, 2003.
-
(2003)
Signal Process.
, vol.83
, pp. 2421-2432
-
-
Mathieu, B.1
Melchior, P.2
Oustaloup, A.3
Ceryal, C.4
-
13
-
-
15544379440
-
Application of fractional derivatives in thermal analysis of disk brakes
-
Dec.
-
O. P. Agrawal, “Application of fractional derivatives in thermal analysis of disk brakes,” Nonlinear Dynam., vol. 38, pp. 191–206, Dec. 2004.
-
(2004)
Nonlinear Dynam.
, vol.38
, pp. 191-206
-
-
Agrawal, O.P.1
-
15
-
-
15544381811
-
Fractional order control of a hexapod robot
-
Dec.
-
M. F. Silva, J. A. T. Machado, and A. M. Lopes, “Fractional order control of a hexapod robot,” Nonlinear Dynam., vol. 38, pp. 417–433, Dec. 2004.
-
(2004)
Nonlinear Dynam.
, vol.38
, pp. 417-433
-
-
Silva, M.F.1
Machado, J.A.T.2
Lopes, A.M.3
-
16
-
-
33244492896
-
A simple and efficient design of variable fractional delay fir filters
-
Feb.
-
H. Zhao and J. Yu, “A simple and efficient design of variable fractional delay fir filters,” IEEE Trans. Circuit Syst II, Exp. Briefs, vol. 53, no. 2, pp. 157–160, Feb. 2006.
-
(2006)
IEEE Trans. Circuit Syst II, Exp. Briefs
, vol.53
, Issue.2
, pp. 157-160
-
-
Zhao, H.1
Yu, J.2
-
17
-
-
15544378664
-
A fractional linear view of the fractional Brownian motion
-
Dec.
-
M. D. Ortigueira and A. Guimaraes, “A fractional linear view of the fractional Brownian motion,” Nonlinear Dynam., vol. 38, pp. 295–303, Dec. 2004.
-
(2004)
Nonlinear Dynam.
, vol.38
, pp. 295-303
-
-
Ortigueira, M.D.1
Guimaraes, A.2
-
18
-
-
0036649901
-
The fractional Fourier transform and harmonic oscillation
-
Jul.
-
M. A. Kutay and H. M. Ozaktas, “The fractional Fourier transform and harmonic oscillation,” Nonlinear Dynam., vol. 29, pp. 157–172, Jul. 2002.
-
(2002)
Nonlinear Dynam.
, vol.29
, pp. 157-172
-
-
Kutay, M.A.1
Ozaktas, H.M.2
-
19
-
-
84877655853
-
7nby a regular newton process
-
Jun.
-
7nby a regular newton process,” IEEE Trans. Circuit Syst., vol. CAS-11, no. 2, pp. 210–213, Jun. 1964.
-
(1964)
IEEE Trans. Circuit Syst.
, vol.CAS-11
, Issue.2
, pp. 210-213
-
-
Carlson, G.E.1
Halijak, C.A.2
-
20
-
-
0010174001
-
On the realization of a constant-argument immitance or fractional operator
-
Sep.
-
S. C. D. Roy, “On the realization of a constant-argument immitance or fractional operator,” IEEE Trans. Circuit Syst., vol. CAS-14, no. 3, pp. 264–274, Sep. 1967.
-
(1967)
IEEE Trans. Circuit Syst.
, vol.CAS-14
, Issue.3
, pp. 264-274
-
-
Roy, S.C.D.1
-
22
-
-
0041043642
-
Semiintegral electroanalysis: Analog implementation
-
Jan.
-
K. B. Oldham, “Semiintegral electroanalysis: Analog implementation,” Anal. Chem., vol. 45, pp. 39–47, Jan. 1973.
-
(1973)
Anal. Chem.
, vol.45
, pp. 39-47
-
-
Oldham, K.B.1
-
23
-
-
17444415689
-
Modelling of a capacitive probe in a polarizable medium
-
Apr.
-
K. Biswas, S. Sen, and P. K. Dutta, “Modelling of a capacitive probe in a polarizable medium,” Sens. Actuators A, Phys., vol. 120, pp. 115–122, Apr. 2005.
-
(2005)
Sens. Actuators A, Phys.
, vol.120
, pp. 115-122
-
-
Biswas, K.1
Sen, S.2
Dutta, P.K.3
-
24
-
-
34047162809
-
Studies on design, development and performance analysis of capacitive type sensors
-
Ph.D. dissertation Dept, of Electr. Eng., Indian Inst, of Technol. Kharagpur, India Feb.
-
K. Biswas, “Studies on design, development and performance analysis of capacitive type sensors,” Ph.D. dissertation, Dept, of Electr. Eng., Indian Inst, of Technol., Kharagpur, India, Feb. 2006.
-
(2006)
-
-
Biswas, K.1
-
25
-
-
0242354999
-
Geometrical and physical interpretation of fractional integration and fractional differentiation
-
I. Podlubny, “Geometrical and physical interpretation of fractional integration and fractional differentiation,” J. Fractional Calc. Appl. Anal., vol. 5, no. 4, pp. 357–366, 2002.
-
(2002)
J. Fractional Calc. Appl. Anal.
, vol.5
, Issue.4
, pp. 357-366
-
-
Podlubny, I.1
-
28
-
-
0028721354
-
Analysis of nonexponential transient response due to a constant phase element
-
Dec.
-
F. H. V. Heuveln, “Analysis of nonexponential transient response due to a constant phase element,” J. Electrochem. Soc., vol. 141, pp. 3423–3428, Dec. 1994.
-
(1994)
J. Electrochem. Soc.
, vol.141
, pp. 3423-3428
-
-
Heuveln, F.H.V.1
-
29
-
-
0141961689
-
A new HR-type digital fractional order differentiator
-
Y. Q. Chen and B. M. Vinagre, “A new HR-type digital fractional order differentiator,” Signal Process., vol. 83, pp. 2359–2365, 2003.
-
(2003)
Signal Process.
, vol.83
, pp. 2359-2365
-
-
Chen, Y.Q.1
Vinagre, B.M.2
-
30
-
-
0142010055
-
On the initial conditions in continuous-time fractional linear systems
-
M. D. Ortigueira, “On the initial conditions in continuous-time fractional linear systems,” Signal Process., vol. 83, pp. 2301–2309, 2003.
-
(2003)
Signal Process.
, vol.83
, pp. 2301-2309
-
-
Ortigueira, M.D.1
|