메뉴 건너뛰기




Volumn , Issue , 2007, Pages 857-862

One-class SVM based unusual condition monitoring for risk management of hydroelectric power plants

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; BEARINGS (STRUCTURAL); COMPUTER NETWORKS; CONDITION MONITORING; HYDROELECTRIC POWER; HYDROELECTRIC POWER PLANTS; LATTICE VIBRATIONS; NEURAL NETWORKS; RISK ANALYSIS; RISK MANAGEMENT; SENSORS; SUPPORT VECTOR MACHINES; VIBRATION ANALYSIS; VIBRATIONS (MECHANICAL);

EID: 51749114042     PISSN: 10987576     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IJCNN.2007.4371070     Document Type: Conference Paper
Times cited : (7)

References (9)
  • 4
    • 33749003757 scopus 로고    scopus 로고
    • Using principal components in a proportional hazards model with applications in condition-based maintenance
    • Lin D, Banjevic D and Jardine AKS, "Using principal components in a proportional hazards model with applications in condition-based maintenance," The Journal of the Operational Researche Sciety, 57, pp. 910-919, 2006.
    • (2006) The Journal of the Operational Researche Sciety , vol.57 , pp. 910-919
    • Lin, D.1    Banjevic, D.2    Jardine, A.K.S.3
  • 7
    • 34249753618 scopus 로고
    • Support Vector Networks
    • C. Cortes and V. Vapnik, "Support Vector Networks," Machine Learning, 20, pp. 273-297, 1995.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.