-
1
-
-
0033536012
-
Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
-
Alon, U., Barkai, N., Notterman, D. A., Gish, K., Ybarra, S., Mack, D., Levine, A. J. (1999). Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Cell Biol. 96:6745-6750.
-
(1999)
Cell Biol
, vol.96
, pp. 6745-6750
-
-
Alon, U.1
Barkai, N.2
Notterman, D.A.3
Gish, K.4
Ybarra, S.5
Mack, D.6
Levine, A.J.7
-
3
-
-
34249753618
-
Support vector networks
-
Cortes, C., Vapnik, V. (1995). Support vector networks. Machine Learn. 20:273-279.
-
(1995)
Machine Learn
, vol.20
, pp. 273-279
-
-
Cortes, C.1
Vapnik, V.2
-
6
-
-
0036489046
-
Comparison of discrimination methods for the classification of tumors using gene expression data
-
Dudoit, S., Fridlyand, J., Speed, T. P. (2002). Comparison of discrimination methods for the classification of tumors using gene expression data. J. Am. Stat. Assoc. 97:77-87.
-
(2002)
J. Am. Stat. Assoc
, vol.97
, pp. 77-87
-
-
Dudoit, S.1
Fridlyand, J.2
Speed, T.P.3
-
7
-
-
3543109140
-
A feature selection Newton method for support vector machine classification
-
Fung, G., Mangasarian, O. L. (2004). A feature selection Newton method for support vector machine classification. Comput. Optim. Appl. 28:185-202.
-
(2004)
Comput. Optim. Appl
, vol.28
, pp. 185-202
-
-
Fung, G.1
Mangasarian, O.L.2
-
8
-
-
0033636139
-
Support vector machine classification and validation of cancer tissue samples using microarray expression data
-
Furey, T., Cristianini, N., Duffy, N., Bednarski, D., Schummer, M., Haussler, D. (2000). Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16:906-914.
-
(2000)
Bioinformatics
, vol.16
, pp. 906-914
-
-
Furey, T.1
Cristianini, N.2
Duffy, N.3
Bednarski, D.4
Schummer, M.5
Haussler, D.6
-
9
-
-
0033569406
-
Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
-
Golub, T., Slonim, D., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J., Coller, H., Loh, M., Downing, J., Caligiuri, M., Bloomfield, C., Lander, E. (1999). Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science 286:531-537.
-
(1999)
Science
, vol.286
, pp. 531-537
-
-
Golub, T.1
Slonim, D.2
Tamayo, P.3
Huard, C.4
Gaasenbeek, M.5
Mesirov, J.6
Coller, H.7
Loh, M.8
Downing, J.9
Caligiuri, M.10
Bloomfield, C.11
Lander, E.12
-
10
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
Guyon, I., Watson, J., Barnhill, S., Vapnik, V. (2002). Gene selection for cancer classification using support vector machines. Machine Learn. 46:191-202.
-
(2002)
Machine Learn
, vol.46
, pp. 191-202
-
-
Guyon, I.1
Watson, J.2
Barnhill, S.3
Vapnik, V.4
-
12
-
-
0031381525
-
Wrapper for feature subset selection
-
Kohavi, R., John, G. (1997). Wrapper for feature subset selection. Artific. Intell. J. 97:273-324.
-
(1997)
Artific. Intell. J
, vol.97
, pp. 273-324
-
-
Kohavi, R.1
John, G.2
-
13
-
-
0002959696
-
The wrapper approach
-
Liu, H, Motoda, H, eds, Dordrecht, The Netherlands: Kluwer Academic Publishers, pp
-
Kohavi, R., John, G. (1998). The wrapper approach. In: Liu, H., Motoda, H., eds. Feature Selection for Knowledge Discovery and Data Mining. Dordrecht, The Netherlands: Kluwer Academic Publishers, pp. 33-50.
-
(1998)
Feature Selection for Knowledge Discovery and Data Mining
, pp. 33-50
-
-
Kohavi, R.1
John, G.2
-
14
-
-
0001901666
-
Induction of selective Bayesian classifiers
-
UAI, Seattle, pp
-
Langley, P., Sage, S. (1994). Induction of selective Bayesian classifiers. In Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence. (UAI), Seattle, pp. 399-406.
-
(1994)
Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence
, pp. 399-406
-
-
Langley, P.1
Sage, S.2
-
15
-
-
51649105264
-
-
Lee, Y.-J., Mangasarian, O. L. (2001). A smooth support vector machine. Comput. Optim. Appl. 20:5-22. (Data Mining Institute, University of Wisconsin, Technical Report 99-03. ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/ 99-03.ps)
-
Lee, Y.-J., Mangasarian, O. L. (2001). A smooth support vector machine. Comput. Optim. Appl. 20:5-22. (Data Mining Institute, University of Wisconsin, Technical Report 99-03. ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/ 99-03.ps)
-
-
-
-
16
-
-
51649092647
-
Incremental reduced support vector machine
-
Kaohsiung, Taiwan
-
Lee, Y.-J., Lo, H.-Y., Huang, S.-Y. (2003a). Incremental reduced support vector machine. In Proceedings of the 2003 International Conference on Informatics, Cybernetics, and Systems (ICICS 2003). Kaohsiung, Taiwan.
-
(2003)
Proceedings of the 2003 International Conference on Informatics, Cybernetics, and Systems (ICICS 2003)
-
-
Lee, Y.-J.1
Lo, H.-Y.2
Huang, S.-Y.3
-
17
-
-
0037391605
-
Survival-time classification of breast cancer patients
-
Lee, Y.-J., Mangasarian, O. L., Wolberg, W. H. (2003b). Survival-time classification of breast cancer patients. Comput. Optim. Appl. 25:151-166.
-
(2003)
Comput. Optim. Appl
, vol.25
, pp. 151-166
-
-
Lee, Y.-J.1
Mangasarian, O.L.2
Wolberg, W.H.3
-
18
-
-
0003798641
-
Support Vector Machine Classification of Microarray data
-
Tech. Rep. No. AI Memo/CBCL Paper #1677/#182. MIT AI Lab and CBCL
-
Mukherjee, S., Tamayo, P., Slonim, D., Verri, A., Golub, T., Mesirov, J., Poggio, T. (1998). Support Vector Machine Classification of Microarray data. Tech. Rep. No. AI Memo/CBCL Paper #1677/#182. MIT AI Lab and CBCL.
-
(1998)
-
-
Mukherjee, S.1
Tamayo, P.2
Slonim, D.3
Verri, A.4
Golub, T.5
Mesirov, J.6
Poggio, T.7
-
19
-
-
23044520947
-
On the lasso and its dual
-
Osborne, M. R., Presnell, B., Turlach, B. A. (2000). On the lasso and its dual. J. Comput. Graph. Stat. 9:319-337.
-
(2000)
J. Comput. Graph. Stat
, vol.9
, pp. 319-337
-
-
Osborne, M.R.1
Presnell, B.2
Turlach, B.A.3
-
20
-
-
0033726346
-
Class prediction and discovery using gene expression data
-
Slonim, D., Tamayo, P., Mesirov, J., Golub, T., Lander, E. (2000). Class prediction and discovery using gene expression data. In Proceedings of the Fourth Annual International Conference on Computational Molecular Biology. pp. 263-272.
-
(2000)
Proceedings of the Fourth Annual International Conference on Computational Molecular Biology
, pp. 263-272
-
-
Slonim, D.1
Tamayo, P.2
Mesirov, J.3
Golub, T.4
Lander, E.5
-
21
-
-
0001287271
-
Regression shrinkage and selection via the lasso
-
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B Methodological 58:267-288.
-
(1996)
J. R. Stat. Soc. Ser. B Methodological
, vol.58
, pp. 267-288
-
-
Tibshirani, R.1
-
23
-
-
84890520049
-
Use of the zero-norm with linear models and kernel methods
-
Weston, J., Elisseeff, A., Schölkopf, B., Tipping, M. (2003). Use of the zero-norm with linear models and kernel methods. J. Machine Learn Res. 3:1439-1461.
-
(2003)
J. Machine Learn Res
, vol.3
, pp. 1439-1461
-
-
Weston, J.1
Elisseeff, A.2
Schölkopf, B.3
Tipping, M.4
-
24
-
-
84898948710
-
Feature selection for SVMs
-
Weston, J., Mukherjee, S., Chapelle, O., Pontil, M., Poggio, T., Vapnik, V. (2001). Feature selection for SVMs. In Advances in Neural Information Processing Systems 13. pp. 668-674.
-
(2001)
Advances in Neural Information Processing Systems
, vol.13
, pp. 668-674
-
-
Weston, J.1
Mukherjee, S.2
Chapelle, O.3
Pontil, M.4
Poggio, T.5
Vapnik, V.6
-
25
-
-
1942451938
-
Feature selection for high-dimensional data: A fast correlation-based filter solution
-
Washington, DC, pp
-
Yu, L., Liu, H. (2003). Feature selection for high-dimensional data: A fast correlation-based filter solution. In Proceedings of the Twentieth International Conference on Machine Learning (ICML). Washington, DC, pp. 856-863.
-
(2003)
Proceedings of the Twentieth International Conference on Machine Learning (ICML)
, pp. 856-863
-
-
Yu, L.1
Liu, H.2
-
26
-
-
84899024917
-
1-Norm support vector machines
-
Thrun, S, Saul, L, Schökopf, B, eds. Cambridge, MA: MIT Press
-
Zhu, J., Rosset, S., Hastie, T., Tibshirani, R. (2004). 1-Norm support vector machines. In: Advances in Neural Information Processing Systems 16. Thrun, S., Saul, L., Schökopf, B., eds. Cambridge, MA: MIT Press.
-
(2004)
Advances in Neural Information Processing Systems 16
-
-
Zhu, J.1
Rosset, S.2
Hastie, T.3
Tibshirani, R.4
|