메뉴 건너뛰기




Volumn 18, Issue 5, 2008, Pages 827-840

Incremental forward feature selection with application to microarray gene expression data

Author keywords

1 Norm support vector machine; Filter model; Incremental forward feature selection; Weight score; Wrapper model

Indexed keywords

ANALYTIC METHOD; ARTICLE; DATA MINING; GENE EXPRESSION; LEARNING ALGORITHM; MATHEMATICAL MODEL; MICROARRAY ANALYSIS; PRIORITY JOURNAL; SUPPORT VECTOR MACHINE;

EID: 51649118105     PISSN: 10543406     EISSN: 15205711     Source Type: Journal    
DOI: 10.1080/10543400802277868     Document Type: Article
Times cited : (15)

References (26)
  • 1
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    • Alon, U., Barkai, N., Notterman, D. A., Gish, K., Ybarra, S., Mack, D., Levine, A. J. (1999). Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Cell Biol. 96:6745-6750.
    • (1999) Cell Biol , vol.96 , pp. 6745-6750
    • Alon, U.1    Barkai, N.2    Notterman, D.A.3    Gish, K.4    Ybarra, S.5    Mack, D.6    Levine, A.J.7
  • 3
    • 34249753618 scopus 로고
    • Support vector networks
    • Cortes, C., Vapnik, V. (1995). Support vector networks. Machine Learn. 20:273-279.
    • (1995) Machine Learn , vol.20 , pp. 273-279
    • Cortes, C.1    Vapnik, V.2
  • 6
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • Dudoit, S., Fridlyand, J., Speed, T. P. (2002). Comparison of discrimination methods for the classification of tumors using gene expression data. J. Am. Stat. Assoc. 97:77-87.
    • (2002) J. Am. Stat. Assoc , vol.97 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.P.3
  • 7
    • 3543109140 scopus 로고    scopus 로고
    • A feature selection Newton method for support vector machine classification
    • Fung, G., Mangasarian, O. L. (2004). A feature selection Newton method for support vector machine classification. Comput. Optim. Appl. 28:185-202.
    • (2004) Comput. Optim. Appl , vol.28 , pp. 185-202
    • Fung, G.1    Mangasarian, O.L.2
  • 8
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machine classification and validation of cancer tissue samples using microarray expression data
    • Furey, T., Cristianini, N., Duffy, N., Bednarski, D., Schummer, M., Haussler, D. (2000). Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16:906-914.
    • (2000) Bioinformatics , vol.16 , pp. 906-914
    • Furey, T.1    Cristianini, N.2    Duffy, N.3    Bednarski, D.4    Schummer, M.5    Haussler, D.6
  • 10
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon, I., Watson, J., Barnhill, S., Vapnik, V. (2002). Gene selection for cancer classification using support vector machines. Machine Learn. 46:191-202.
    • (2002) Machine Learn , vol.46 , pp. 191-202
    • Guyon, I.1    Watson, J.2    Barnhill, S.3    Vapnik, V.4
  • 12
    • 0031381525 scopus 로고    scopus 로고
    • Wrapper for feature subset selection
    • Kohavi, R., John, G. (1997). Wrapper for feature subset selection. Artific. Intell. J. 97:273-324.
    • (1997) Artific. Intell. J , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.2
  • 13
    • 0002959696 scopus 로고    scopus 로고
    • The wrapper approach
    • Liu, H, Motoda, H, eds, Dordrecht, The Netherlands: Kluwer Academic Publishers, pp
    • Kohavi, R., John, G. (1998). The wrapper approach. In: Liu, H., Motoda, H., eds. Feature Selection for Knowledge Discovery and Data Mining. Dordrecht, The Netherlands: Kluwer Academic Publishers, pp. 33-50.
    • (1998) Feature Selection for Knowledge Discovery and Data Mining , pp. 33-50
    • Kohavi, R.1    John, G.2
  • 15
    • 51649105264 scopus 로고    scopus 로고
    • Lee, Y.-J., Mangasarian, O. L. (2001). A smooth support vector machine. Comput. Optim. Appl. 20:5-22. (Data Mining Institute, University of Wisconsin, Technical Report 99-03. ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/ 99-03.ps)
    • Lee, Y.-J., Mangasarian, O. L. (2001). A smooth support vector machine. Comput. Optim. Appl. 20:5-22. (Data Mining Institute, University of Wisconsin, Technical Report 99-03. ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/ 99-03.ps)
  • 17
    • 0037391605 scopus 로고    scopus 로고
    • Survival-time classification of breast cancer patients
    • Lee, Y.-J., Mangasarian, O. L., Wolberg, W. H. (2003b). Survival-time classification of breast cancer patients. Comput. Optim. Appl. 25:151-166.
    • (2003) Comput. Optim. Appl , vol.25 , pp. 151-166
    • Lee, Y.-J.1    Mangasarian, O.L.2    Wolberg, W.H.3
  • 18
    • 0003798641 scopus 로고    scopus 로고
    • Support Vector Machine Classification of Microarray data
    • Tech. Rep. No. AI Memo/CBCL Paper #1677/#182. MIT AI Lab and CBCL
    • Mukherjee, S., Tamayo, P., Slonim, D., Verri, A., Golub, T., Mesirov, J., Poggio, T. (1998). Support Vector Machine Classification of Microarray data. Tech. Rep. No. AI Memo/CBCL Paper #1677/#182. MIT AI Lab and CBCL.
    • (1998)
    • Mukherjee, S.1    Tamayo, P.2    Slonim, D.3    Verri, A.4    Golub, T.5    Mesirov, J.6    Poggio, T.7
  • 21
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B Methodological 58:267-288.
    • (1996) J. R. Stat. Soc. Ser. B Methodological , vol.58 , pp. 267-288
    • Tibshirani, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.