메뉴 건너뛰기




Volumn 42, Issue 1, 2009, Pages 33-42

Discrete data clustering using finite mixture models

Author keywords

Discrete data; EM; Finite mixture models; Generalized Dirichlet distribution; Image databases; Labeled and unlabeled images; Multinomial; Spatial color; Summarization; Text classification

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLASSIFICATION (OF INFORMATION); CLUSTERING ALGORITHMS; COMPUTER NETWORKS; COMPUTER VISION; FEATURE EXTRACTION; IMAGE PROCESSING; PATTERN RECOGNITION;

EID: 51649088874     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2008.06.022     Document Type: Article
Times cited : (51)

References (55)
  • 1
    • 34250816203 scopus 로고    scopus 로고
    • Unsupervised learning of a finite discrete mixture: applications to texture modeling and image databases summarization
    • Bouguila N., and Ziou D. Unsupervised learning of a finite discrete mixture: applications to texture modeling and image databases summarization. J. Visual Commun. Image Representation 18 4 (2007) 295-309
    • (2007) J. Visual Commun. Image Representation , vol.18 , Issue.4 , pp. 295-309
    • Bouguila, N.1    Ziou, D.2
  • 3
    • 0036887599 scopus 로고    scopus 로고
    • On the use of Bernoulli mixture models for text classification
    • Juan A., and Vidal E. On the use of Bernoulli mixture models for text classification. Pattern Recognition 35 (2002) 2705-2710
    • (2002) Pattern Recognition , vol.35 , pp. 2705-2710
    • Juan, A.1    Vidal, E.2
  • 4
    • 84966534942 scopus 로고
    • Some simple effective approximations to the 2-poisson model for probabilistic weighted retrieval
    • Springer, New York
    • Robertson S.E., and Walker S. Some simple effective approximations to the 2-poisson model for probabilistic weighted retrieval. SIGIR '94 (1994), Springer, New York 232-241
    • (1994) SIGIR '94 , pp. 232-241
    • Robertson, S.E.1    Walker, S.2
  • 6
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labeled and unlabeled documents using EM
    • Nigam K., McCallum A., Thrun S., and Mitchell T. Text classification from labeled and unlabeled documents using EM. Mach. Learn. 39 2 (2000) 103-134
    • (2000) Mach. Learn. , vol.39 , Issue.2 , pp. 103-134
    • Nigam, K.1    McCallum, A.2    Thrun, S.3    Mitchell, T.4
  • 16
    • 7444239786 scopus 로고    scopus 로고
    • Unsupervised learning of a finite mixture model based on the Dirichlet distribution and its application
    • Bouguila N., Ziou D., and Vaillancourt J. Unsupervised learning of a finite mixture model based on the Dirichlet distribution and its application. IEEE Trans. Image Process. 13 11 (2004) 1533-1543
    • (2004) IEEE Trans. Image Process. , vol.13 , Issue.11 , pp. 1533-1543
    • Bouguila, N.1    Ziou, D.2    Vaillancourt, J.3
  • 17
    • 33747684076 scopus 로고    scopus 로고
    • A hybrid SEM algorithm for high-dimensional unsupervised learning using a finite generalized Dirichlet mixture
    • Bouguila N., and Ziou D. A hybrid SEM algorithm for high-dimensional unsupervised learning using a finite generalized Dirichlet mixture. IEEE Trans. Image Process. 15 9 (2006) 2657-2668
    • (2006) IEEE Trans. Image Process. , vol.15 , Issue.9 , pp. 2657-2668
    • Bouguila, N.1    Ziou, D.2
  • 20
    • 36048970168 scopus 로고    scopus 로고
    • High-dimensional unsupervised selection and estimation of a finite generalized Dirichlet mixture model based on minimum message length
    • Bouguila N., and Ziou D. High-dimensional unsupervised selection and estimation of a finite generalized Dirichlet mixture model based on minimum message length. IEEE Trans. Pattern Anal. Mach. Intell. 29 10 (2007) 1716-1731
    • (2007) IEEE Trans. Pattern Anal. Mach. Intell. , vol.29 , Issue.10 , pp. 1716-1731
    • Bouguila, N.1    Ziou, D.2
  • 21
    • 51649098004 scopus 로고    scopus 로고
    • T.P. Minka, Bayesian inference, entropy, and the multinomial distribution, Technical Report, CMU, 2003.
    • T.P. Minka, Bayesian inference, entropy, and the multinomial distribution, Technical Report, CMU, 2003.
  • 22
    • 0030092468 scopus 로고    scopus 로고
    • Distribution of content words and phrases in text and language modelling
    • Katz S.M. Distribution of content words and phrases in text and language modelling. Nat. Lang. Eng. 2 (1996) 15-59
    • (1996) Nat. Lang. Eng. , vol.2 , pp. 15-59
    • Katz, S.M.1
  • 23
    • 51649102653 scopus 로고    scopus 로고
    • J. Aitchison, The Statistical Analysis of Compositional Data, second ed., Chapman & Hall, New York.
    • J. Aitchison, The Statistical Analysis of Compositional Data, second ed., Chapman & Hall, New York.
  • 24
    • 84947379310 scopus 로고
    • Concepts of independence for proportions with a generalization of the Dirichlet distribution
    • Connor R.J., and Mosimann J.E. Concepts of independence for proportions with a generalization of the Dirichlet distribution. J. Am. Statist. Assoc. 64 (1969) 194-206
    • (1969) J. Am. Statist. Assoc. , vol.64 , pp. 194-206
    • Connor, R.J.1    Mosimann, J.E.2
  • 25
    • 21244483956 scopus 로고    scopus 로고
    • A Bayesian approach employing generalized Dirichlet priors in predicting microchip yields
    • Wong T. A Bayesian approach employing generalized Dirichlet priors in predicting microchip yields. J. Chin. Inst. Ind. Eng. 22 3 (2005) 210-217
    • (2005) J. Chin. Inst. Ind. Eng. , vol.22 , Issue.3 , pp. 210-217
    • Wong, T.1
  • 26
    • 0007232014 scopus 로고
    • A generalized Dirichlet distribution in Bayesian life testing
    • Lochner R.H. A generalized Dirichlet distribution in Bayesian life testing. J. R. Statist. Soc. B 37 (1975) 103-113
    • (1975) J. R. Statist. Soc. B , vol.37 , pp. 103-113
    • Lochner, R.H.1
  • 27
    • 0032581447 scopus 로고    scopus 로고
    • Some extensions and applications of a Bayesian strategy for monitoring multiple outcomes in clinical trials
    • Thall P.F., and Sung H.G. Some extensions and applications of a Bayesian strategy for monitoring multiple outcomes in clinical trials. Statist. Med. 17 (1998) 1563-1580
    • (1998) Statist. Med. , vol.17 , pp. 1563-1580
    • Thall, P.F.1    Sung, H.G.2
  • 28
    • 10044292323 scopus 로고    scopus 로고
    • Generalized Dirichlet distribution in Bayesian analysis
    • Wong T. Generalized Dirichlet distribution in Bayesian analysis. Appl. Math. Comput. 97 (1998) 165-181
    • (1998) Appl. Math. Comput. , vol.97 , pp. 165-181
    • Wong, T.1
  • 32
    • 0009568899 scopus 로고    scopus 로고
    • Acceleration of the EM algorithm by using quasi-Newton methods
    • Jamshidian M., and Jennrich R.I. Acceleration of the EM algorithm by using quasi-Newton methods. J. R. Statist. Soc. (B) 59 3 (1997) 569-587
    • (1997) J. R. Statist. Soc. (B) , vol.59 , Issue.3 , pp. 569-587
    • Jamshidian, M.1    Jennrich, R.I.2
  • 34
    • 0029174301 scopus 로고
    • Applications of the Dirichlet distribution to forensic match probabilities
    • Lange K. Applications of the Dirichlet distribution to forensic match probabilities. Genetica 96 (1995) 107-117
    • (1995) Genetica , vol.96 , pp. 107-117
    • Lange, K.1
  • 36
    • 4444246621 scopus 로고    scopus 로고
    • Fuzzy clustering algorithm for latent class model
    • Lin C.-T., Chen C.-B., and Wu W.-H. Fuzzy clustering algorithm for latent class model. Statist. Comput. 14 4 (2004) 299-310
    • (2004) Statist. Comput. , vol.14 , Issue.4 , pp. 299-310
    • Lin, C.-T.1    Chen, C.-B.2    Wu, W.-H.3
  • 37
    • 0034824884 scopus 로고    scopus 로고
    • Concept decompositions for large sparse text data using clustering
    • Dhillon I.S., and Modha D.S. Concept decompositions for large sparse text data using clustering. Mach. Learn. 42 1-2 (2001) 143-175
    • (2001) Mach. Learn. , vol.42 , Issue.1-2 , pp. 143-175
    • Dhillon, I.S.1    Modha, D.S.2
  • 40
    • 33746365837 scopus 로고    scopus 로고
    • Unsupervised selection of a finite Dirichlet mixture model: an MML-based approach
    • Bouguila N., and Ziou D. Unsupervised selection of a finite Dirichlet mixture model: an MML-based approach. IEEE Trans. Knowl. Data Eng. 18 8 (2006) 993-1009
    • (2006) IEEE Trans. Knowl. Data Eng. , vol.18 , Issue.8 , pp. 993-1009
    • Bouguila, N.1    Ziou, D.2
  • 41
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G. Estimating the dimension of a model. Ann. Statist. 6 (1978) 461-464
    • (1978) Ann. Statist. , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 42
    • 0032663356 scopus 로고    scopus 로고
    • Image retrieval: current techniques, promising directions and open issues
    • Rui Y., Huang T.S., and Chang S.-F. Image retrieval: current techniques, promising directions and open issues. J. Visual Commun. Image Representation 10 (1999) 39-62
    • (1999) J. Visual Commun. Image Representation , vol.10 , pp. 39-62
    • Rui, Y.1    Huang, T.S.2    Chang, S.-F.3
  • 44
    • 0035439162 scopus 로고    scopus 로고
    • Categorization of image databases for efficient retrieval using robust mixture decomposition
    • Medasani S., and Krishnapuram R. Categorization of image databases for efficient retrieval using robust mixture decomposition. Comput. Vision Image Understanding 83 (2001) 216-235
    • (2001) Comput. Vision Image Understanding , vol.83 , pp. 216-235
    • Medasani, S.1    Krishnapuram, R.2
  • 47
    • 0032691852 scopus 로고    scopus 로고
    • Comparing images using joint histograms
    • Pass G., and Zabih R. Comparing images using joint histograms. Multimedia Syst. 7 (1999) 234-240
    • (1999) Multimedia Syst. , vol.7 , pp. 234-240
    • Pass, G.1    Zabih, R.2
  • 48
    • 34547504185 scopus 로고    scopus 로고
    • N. Bouguila, Spatial color image databases summarization, in: IEEE International Conference on Acoustics, Speech, and Signal Processing ICASSP2007, vol. 1, Honolulu, HI, USA, 2007, pp. I-953-I-956.
    • N. Bouguila, Spatial color image databases summarization, in: IEEE International Conference on Acoustics, Speech, and Signal Processing ICASSP2007, vol. 1, Honolulu, HI, USA, 2007, pp. I-953-I-956.
  • 50
    • 0023312404 scopus 로고
    • Estimation of probabilities from sparse data for the language model component of a speech recognizer
    • Katz S. Estimation of probabilities from sparse data for the language model component of a speech recognizer. IEEE Trans. Acoust. Speech Signal Process. 35 3 (1987) 400-401
    • (1987) IEEE Trans. Acoust. Speech Signal Process. , vol.35 , Issue.3 , pp. 400-401
    • Katz, S.1
  • 51
    • 0026187945 scopus 로고
    • The zero-frequency problem: estimating the probabilities of novel events in adaptive text compression
    • Witten I.H., and Bell T.C. The zero-frequency problem: estimating the probabilities of novel events in adaptive text compression. IEEE Trans. Inform. Theory 37 4 (1991) 1085-1094
    • (1991) IEEE Trans. Inform. Theory , vol.37 , Issue.4 , pp. 1085-1094
    • Witten, I.H.1    Bell, T.C.2
  • 52
    • 85024115120 scopus 로고    scopus 로고
    • An empirical study of smoothing techniques for language modeling
    • Joshi A., and Palmer M. (Eds), Morgan Kaufmann Publishers, Los Altos, CA
    • Chen S.F., and Goodman J. An empirical study of smoothing techniques for language modeling. In: Joshi A., and Palmer M. (Eds). Proceedings of the 34th Annual Meeting of the Association for Computational Linguistics (1996), Morgan Kaufmann Publishers, Los Altos, CA 310-318
    • (1996) Proceedings of the 34th Annual Meeting of the Association for Computational Linguistics , pp. 310-318
    • Chen, S.F.1    Goodman, J.2
  • 53
    • 0038083042 scopus 로고
    • Classification and estimation in analysis of variance problems
    • Hartley H.O., and Rao J.N.K. Classification and estimation in analysis of variance problems. Rev. Int. Statist. Inst. 36 (1968) 141-147
    • (1968) Rev. Int. Statist. Inst. , vol.36 , pp. 141-147
    • Hartley, H.O.1    Rao, J.N.K.2
  • 54
    • 0001381164 scopus 로고
    • Estimating the components of a mixture of normal distributions
    • Day N.E. Estimating the components of a mixture of normal distributions. Biometrika 56 3 (1969) 463-474
    • (1969) Biometrika , vol.56 , Issue.3 , pp. 463-474
    • Day, N.E.1
  • 55
    • 51649115641 scopus 로고    scopus 로고
    • A.K. McCallum, Bow: a toolkit for statistical language modeling, text retrieval, classification and clustering 〈http://www.cs.cmu.edu/∼mccallum/bow〉, 1996.
    • A.K. McCallum, Bow: a toolkit for statistical language modeling, text retrieval, classification and clustering 〈http://www.cs.cmu.edu/∼mccallum/bow〉, 1996.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.