메뉴 건너뛰기




Volumn , Issue , 2008, Pages 4717-4720

Irrelevant variability normalization based HMM training using MAP estimation of feature transforms for robust speech recognition

Author keywords

Feature transformation; Hidden Markov model; MAP estimate; Robust speech recognition

Indexed keywords

ACOUSTICS; MAXIMUM LIKELIHOOD; MAXIMUM LIKELIHOOD ESTIMATION; PARAMETER ESTIMATION; SIGNAL PROCESSING; SPEECH; SPEECH ANALYSIS;

EID: 51449106989     PISSN: 15206149     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICASSP.2008.4518710     Document Type: Conference Paper
Times cited : (6)

References (11)
  • 1
    • 51449116845 scopus 로고    scopus 로고
    • Aurora document AU/217/99, Availability of Finnish speechdat-car database for ETSI STQ WI008 front-end standardisation, Nokia Nov 1999.
    • Aurora document AU/217/99, "Availability of Finnish speechdat-car database for ETSI STQ WI008 front-end standardisation," Nokia Nov 1999.
  • 2
    • 51449099067 scopus 로고    scopus 로고
    • ETSI standard document, Speech processing, transmission and quality aspects (STQ); distributed speech recognition; advanced front-end feature extraction algorithm; compression algorithms, ETSI ES 202 050 v1.1.1 (2002-10), 2002.
    • ETSI standard document, "Speech processing, transmission and quality aspects (STQ); distributed speech recognition; advanced front-end feature extraction algorithm; compression algorithms," ETSI ES 202 050 v1.1.1 (2002-10), 2002.
  • 3
    • 0032050110 scopus 로고    scopus 로고
    • Maximum likelihood linear transformations for HMM-based speech recognition
    • M. J. F. Gales, "Maximum likelihood linear transformations for HMM-based speech recognition," Computer Speech and Language, vol. 12, pp.75-98, 1998.
    • (1998) Computer Speech and Language , vol.12 , pp. 75-98
    • Gales, M.J.F.1
  • 4
    • 0038669544 scopus 로고    scopus 로고
    • The AURORA experimental framework for the performance evaluations of speech recognition systems under noisy conditions
    • Paris, France
    • H. G. Hirsch and D. Pearce, "The AURORA experimental framework for the performance evaluations of speech recognition systems under noisy conditions," ISCA ITRW ASR-2000, Paris, France, 2000, pp.181-188.
    • (2000) ISCA ITRW ASR-2000 , pp. 181-188
    • Hirsch, H.G.1    Pearce, D.2
  • 5
    • 34547526633 scopus 로고    scopus 로고
    • A maximum likelihood training approach to irrelevant variability compensation based on piecewise linear transformations
    • Q. Huo and D. Zhu, "A maximum likelihood training approach to irrelevant variability compensation based on piecewise linear transformations," Proc. Interspeech 2006 - ICSLP, pp.1129-1132.
    • Proc. Interspeech 2006 - ICSLP , pp. 1129-1132
    • Huo, Q.1    Zhu, D.2
  • 6
    • 0036461005 scopus 로고    scopus 로고
    • Structural maximum a posteriori linear regression for fast HMM adaptation
    • O. Siohan, T. A. Myrvoll, and C.-H. Lee, "Structural maximum a posteriori linear regression for fast HMM adaptation," Computer, Speech and Language, vol. 16, pp.5-24, 2002.
    • (2002) Computer, Speech and Language , vol.16 , pp. 5-24
    • Siohan, O.1    Myrvoll, T.A.2    Lee, C.-H.3
  • 7
    • 44849090158 scopus 로고    scopus 로고
    • An environment compensated minimum classification error training approach based on stochastic vector mapping
    • J. Wu and Q. Huo, "An environment compensated minimum classification error training approach based on stochastic vector mapping," IEEE Trans. on Audio, Speech and Language Processing, Vol. 14, No. 6, pp.2147-2155, 2006.
    • (2006) IEEE Trans. on Audio, Speech and Language Processing , vol.14 , Issue.6 , pp. 2147-2155
    • Wu, J.1    Huo, Q.2
  • 8
    • 20444395560 scopus 로고    scopus 로고
    • An environment compensated maximum likelihood training approach based on stochastic vector mapping
    • J. Wu, Q. Huo, and D. Zhu, "An environment compensated maximum likelihood training approach based on stochastic vector mapping," Proc. ICASSP 2005, pp. 429-432.
    • (2005) Proc. ICASSP , pp. 429-432
    • Wu, J.1    Huo, Q.2    Zhu, D.3
  • 9
    • 85009063017 scopus 로고    scopus 로고
    • A study of minimum classification error training for segmental switching linear Gaussian hidden Markov models
    • J. Wu, D. Zhu, and Q. Huo, "A study of minimum classification error training for segmental switching linear Gaussian hidden Markov models," Proc. ICSLP 2004, pp.2813-2816.
    • (2004) Proc. ICSLP , pp. 2813-2816
    • Wu, J.1    Zhu, D.2    Huo, Q.3
  • 10
    • 51449107451 scopus 로고    scopus 로고
    • S. J. Young, et al, The HTK Book for HTK Version 3.3, 2005
    • S. J. Young, et al., The HTK Book (for HTK Version 3.3), 2005.
  • 11
    • 34547550743 scopus 로고    scopus 로고
    • D. Zhu and Q. Huo, A maximum likelihood approach to unsuper-vised online adaptation of stochastic vector mapping function for robust speech recognition, Proc. ICASSP-2007, pp.IV-773-776.
    • D. Zhu and Q. Huo, "A maximum likelihood approach to unsuper-vised online adaptation of stochastic vector mapping function for robust speech recognition," Proc. ICASSP-2007, pp.IV-773-776.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.