메뉴 건너뛰기




Volumn 3, Issue , 2006, Pages 1129-1132

A maximum likelihood training approach to irrelevant variability compensation based on piecewise linear transformations

Author keywords

Feature compensation; Hidden Markov model; Maximum likelihood; Robust speech recognition

Indexed keywords

ERROR COMPENSATION; HIDDEN MARKOV MODELS; MARKOV PROCESSES; MATHEMATICAL TRANSFORMATIONS; MAXIMUM LIKELIHOOD; PIECEWISE LINEAR TECHNIQUES; SPEECH RECOGNITION; STOCHASTIC SYSTEMS;

EID: 34547526633     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (16)

References (15)
  • 1
    • 85022112351 scopus 로고    scopus 로고
    • Aurora document AU/217/99, Availability of Finnish SpeechDat-Car database for ETSI STQ W1008 front-end standardisation, Nokia, Nov 1999.
    • Aurora document AU/217/99, "Availability of Finnish SpeechDat-Car database for ETSI STQ W1008 front-end standardisation," Nokia, Nov 1999.
  • 2
    • 85009070292 scopus 로고    scopus 로고
    • L. Deng, A. Acero, M. Plumpe, and X.-D. Huang, Large-vocabulary speech recognition under adverse acoustic environments, Proc. ICSLP-2000,2000, pp.III-806-809.
    • L. Deng, A. Acero, M. Plumpe, and X.-D. Huang, "Large-vocabulary speech recognition under adverse acoustic environments," Proc. ICSLP-2000,2000, pp.III-806-809.
  • 3
    • 0034855352 scopus 로고    scopus 로고
    • High-performance robust speech recognition using stereo training data
    • L. Deng, A. Acero, L. Jiang, J. Droppo, and X.-D. Huang, "High-performance robust speech recognition using stereo training data," Proc. ICASSP-2001, 2001, pp.I-301-304.
    • (2001) Proc. ICASSP , vol.2001
    • Deng, L.1    Acero, A.2    Jiang, L.3    Droppo, J.4    Huang, X.-D.5
  • 4
    • 20444414457 scopus 로고    scopus 로고
    • Analysis and comparison of two speech feature extraction/compensation algorithms
    • L. Deng, J. Wu, J. Droppo, and A. Acero, "Analysis and comparison of two speech feature extraction/compensation algorithms," IEEE Signal Processing Letters, Vol.12, No.6, pp.477-480, 2005.
    • (2005) IEEE Signal Processing Letters , vol.12 , Issue.6 , pp. 477-480
    • Deng, L.1    Wu, J.2    Droppo, J.3    Acero, A.4
  • 5
    • 33745216251 scopus 로고    scopus 로고
    • Maximum mutual information SPLICE transform for seen and unseen conditions
    • J. Droppo and A. Acero, "Maximum mutual information SPLICE transform for seen and unseen conditions," Proc. Eurospeech-2005, 2005, pp.989-992.
    • (2005) Proc. Eurospeech , vol.2005 , pp. 989-992
    • Droppo, J.1    Acero, A.2
  • 6
    • 33846265376 scopus 로고    scopus 로고
    • How to train a discriminative front end with stochastic gradient descent and maximum mutual information
    • J. Droppo, M. Mahajan, A. Gunawardana, and A. Acero, "How to train a discriminative front end with stochastic gradient descent and maximum mutual information," Proc. ASRU-2005, 2005, pp.41-46.
    • (2005) Proc. ASRU-2005 , pp. 41-46
    • Droppo, J.1    Mahajan, M.2    Gunawardana, A.3    Acero, A.4
  • 7
    • 85022103629 scopus 로고    scopus 로고
    • ETSI standard document, Speech processing, transmission and quality aspects (STQ); distributed speech recognition; advanced front-end feature extraction algorithm; compression algorithms, ETSI ES 202 050 v1.1.1 (2002-10), 2002.
    • ETSI standard document, "Speech processing, transmission and quality aspects (STQ); distributed speech recognition; advanced front-end feature extraction algorithm; compression algorithms", ETSI ES 202 050 v1.1.1 (2002-10), 2002.
  • 8
    • 0032050110 scopus 로고    scopus 로고
    • Maximum likelihood linear transformations for HMM-based speech recognition
    • M. J. F. Gales, "Maximum likelihood linear transformations for HMM-based speech recognition," Computer Speech and Language, Vol. 12, pp.75-98, 1998.
    • (1998) Computer Speech and Language , vol.12 , pp. 75-98
    • Gales, M.J.F.1
  • 9
    • 0038669544 scopus 로고    scopus 로고
    • The AURORA experimental framework for the performance evaluations of speech recognition systems under noisy conditions
    • Paris, France
    • H. G. Hirsch and D. Pearce, "The AURORA experimental framework for the performance evaluations of speech recognition systems under noisy conditions," ISCA ITRW ASR-2000, Paris, France, 2000.
    • (2000) ISCA ITRW ASR-2000
    • Hirsch, H.G.1    Pearce, D.2
  • 11
    • 33745193934 scopus 로고    scopus 로고
    • Feature adaptation using projection of Gaussian posteriors
    • K. Visweswariah and P. Olsen, "Feature adaptation using projection of Gaussian posteriors," Proc. Eurospeech-2005, 2005, pp.1785-1788.
    • (2005) Proc. Eurospeech , vol.2005 , pp. 1785-1788
    • Visweswariah, K.1    Olsen, P.2
  • 12
    • 85009257847 scopus 로고    scopus 로고
    • An environment compensated minimum classification error training approach and its evaluation on Aurora2 database
    • Denver
    • J. Wu and Q. Huo, "An environment compensated minimum classification error training approach and its evaluation on Aurora2 database," Proc. ICSLP-2002, Denver, 2002, pp.I-453-456.
    • (2002) Proc. ICSLP-2002
    • Wu, J.1    Huo, Q.2
  • 13
    • 85009181040 scopus 로고    scopus 로고
    • Several HKU approaches for robust speech recognition and their evaluation on Aurora connected digit recognition tasks
    • J. Wu and Q. Huo, "Several HKU approaches for robust speech recognition and their evaluation on Aurora connected digit recognition tasks," Proc. Eurospeech-2003, 2003, pp.21-24.
    • (2003) Proc. Eurospeech , vol.2003 , pp. 21-24
    • Wu, J.1    Huo, Q.2
  • 14
    • 85009063017 scopus 로고    scopus 로고
    • A study of minimum classification error training for segmental switching linear Gaussian hidden Markov models
    • J. Wu, D. Zhu and Q. Huo, "A study of minimum classification error training for segmental switching linear Gaussian hidden Markov models," Proc. ICSLP-2004, 2004.
    • (2004) Proc. ICSLP-2004
    • Wu, J.1    Zhu, D.2    Huo, Q.3
  • 15
    • 20444395560 scopus 로고    scopus 로고
    • An environment compensated maximum likelihood training approach based on stochastic vector mapping
    • J. Wu, Q. Huo and D. Zhu, "An environment compensated maximum likelihood training approach based on stochastic vector mapping," Proc. ICASSP-2005, 2005, pp.I-429-432.
    • (2005) Proc. ICASSP , vol.2005
    • Wu, J.1    Huo, Q.2    Zhu, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.