메뉴 건너뛰기




Volumn 12, Issue 4, 2008, Pages 339-357

Distributed anomaly detection, using cooperative learners and association rule analysis

Author keywords

Association rule analysis; Credit card fraud detection; Distributed anomaly detection; Feature selection

Indexed keywords


EID: 51149094760     PISSN: 1088467X     EISSN: 15714128     Source Type: Journal    
DOI: 10.3233/ida-2008-12403     Document Type: Article
Times cited : (5)

References (34)
  • 5
    • 3543095066 scopus 로고    scopus 로고
    • Communication-Efficient Distributed Mining of Association Rules
    • A. Schuster and R. Wolff, Communication-Efficient Distributed Mining of Association Rules, Data Mining and Knowledge Discovery 8(2) (2004).
    • (2004) Data Mining and Knowledge Discovery , vol.8 , Issue.2
    • Schuster, A.1    Wolff, R.2
  • 9
    • 32444435567 scopus 로고    scopus 로고
    • Applying both Positive and Negative Selection to Supervised Learning for Anomaly Detection
    • X. Hang and H. Dai, Applying both Positive and Negative Selection to Supervised Learning for Anomaly Detection, Proceedings of the GECCO'05 conference, 2005, 345-352.
    • (2005) Proceedings of the GECCO'05 conference , pp. 345-352
    • Hang, X.1    Dai, H.2
  • 10
    • 0346586663 scopus 로고    scopus 로고
    • , Journal of Artificial Intelligence Research 16 (2002), 321-357.
    • , Journal of Artificial Intelligence Research 16 (2002), 321-357.
  • 13
    • 32344440279 scopus 로고    scopus 로고
    • Lazarevic and V Kumar, Feature Bagging for Outlier Detection, Proceedings of the conference on knowledge discovery from data KDD'05, 2005, 157-166.
    • Lazarevic and V Kumar, Feature Bagging for Outlier Detection, Proceedings of the conference on knowledge discovery from data KDD'05, 2005, 157-166.
  • 15
    • 84867577175 scopus 로고    scopus 로고
    • The foundations of cost-sensitive learning
    • International Joint Conference on Artificial Intelligence
    • C. Elkan, The foundations of cost-sensitive learning, Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence, 2001, 973-978.
    • (2001) Proceedings of the Seventeenth , pp. 973-978
    • Elkan, C.1
  • 18
    • 27144549260 scopus 로고    scopus 로고
    • Editorial: Special Issue on Learning from Imbalanced Data Sets
    • N.V Chawla, Editorial: Special Issue on Learning from Imbalanced Data Sets, Sigkdd Explorations 6(Issue 1) (2004), 1-6.
    • (2004) Sigkdd Explorations , vol.6 , Issue.1 , pp. 1-6
    • Chawla, N.V.1
  • 19
    • 85012240666 scopus 로고    scopus 로고
    • Data Mining-based Intrusion Detectors: An Overview of the Columbia IDS Project
    • S.J. Stolfo, W. Lee., P.K. Chan, W. Fan and E. Eskin, Data Mining-based Intrusion Detectors: An Overview of the Columbia IDS Project, SIGMOD Record 30(4) (2001), 5-14.
    • (2001) SIGMOD Record , vol.30 , Issue.4 , pp. 5-14
    • Stolfo, S.J.1    Lee, W.2    Chan, P.K.3    Fan, W.4    Eskin, E.5
  • 20
    • 20444456754 scopus 로고    scopus 로고
    • Motif Oriented Representations to Purge Hostile Events from Unlabeled Sequences
    • MORPHEUS
    • G. Tandon, P. Chan and D. Mitra, MORPHEUS: Motif Oriented Representations to Purge Hostile Events from Unlabeled Sequences, Proceedings of the DMSEC'04 conference, 2004, 16-25.
    • (2004) Proceedings of the DMSEC'04 conference , pp. 16-25
    • Tandon, G.1    Chan, P.2    Mitra, D.3
  • 21
    • 77952380096 scopus 로고    scopus 로고
    • Mining Distance Based Outliers in Near Linear Time with Randomization and a Simple Pruning Rule
    • S.D. Bay and M. Schwabacher, Mining Distance Based Outliers in Near Linear Time with Randomization and a Simple Pruning Rule, SIGKDD '03 (2003), 29-38.
    • (2003) SIGKDD '03 , pp. 29-38
    • Bay, S.D.1    Schwabacher, M.2
  • 22
    • 20844458491 scopus 로고    scopus 로고
    • Mining with Rarity: A Unifying Framework
    • G.M. Weiss, Mining with Rarity: A Unifying Framework, SIGKDD Explorations 6(Issue 1) (2004), 7-19.
    • (2004) SIGKDD Explorations , vol.6 , Issue.1 , pp. 7-19
    • Weiss, G.M.1
  • 23
    • 29144443664 scopus 로고    scopus 로고
    • Minority Report in Fraud Detection: Classification of Skewed Data
    • C. Phua, D. Alahakoon and V Lee, Minority Report in Fraud Detection: Classification of Skewed Data, SIGKDD Explorations 6(1) (2004), 50-59.
    • (2004) SIGKDD Explorations , vol.6 , Issue.1 , pp. 50-59
    • Phua, C.1    Alahakoon, D.2    Lee, V.3
  • 24
    • 0242456797 scopus 로고    scopus 로고
    • Anomaly-based Data Milling for Intrusions
    • ADMIT
    • K. Sequeira and M. Zaki, ADMIT: Anomaly-based Data Milling for Intrusions, SIGKDD 02 (2002), 386-395.
    • (2002) SIGKDD 02 , pp. 386-395
    • Sequeira, K.1    Zaki, M.2
  • 25
    • 85083464467 scopus 로고    scopus 로고
    • Toward Scalable Learning with Nonurliform Class and Cost Distributions: A Case Study in Credit Card Fraud Detection
    • AAAI Press, Menlo Park, Calif
    • P. Chan and S. Stolfo, Toward Scalable Learning with Nonurliform Class and Cost Distributions: A Case Study in Credit Card Fraud Detection, Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining, AAAI Press, Menlo Park, Calif., 1998, 164-168.
    • (1998) Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining , pp. 164-168
    • Chan, P.1    Stolfo, S.2
  • 26
  • 28
    • 51149119276 scopus 로고    scopus 로고
    • Wrapper-based computation and evaluation of sampling methods for imbalanced datasets
    • Chicago, Illinois, August 21-21, UBDM '05. ACM Press, New York, NY
    • N.V Chawla, L.O. Hall and A. Joshi, Wrapper-based computation and evaluation of sampling methods for imbalanced datasets. In Proceedings of the 1st international Workshop on Utility-Based Data Mining (Chicago, Illinois, August 21-21, 2005). UBDM '05. ACM Press, New York, NY, 24-33.
    • (2005) Proceedings of the 1st international Workshop on Utility-Based Data Mining , pp. 24-33
    • Chawla, N.V.1    Hall, L.O.2    Joshi, A.3
  • 29
    • 51149099216 scopus 로고    scopus 로고
    • http://www.cs.waikato.ac.nz/m1/weka/.
  • 30
    • 51149114369 scopus 로고    scopus 로고
    • http://mill.ucsd.edu/index.php?page=Datasets.
  • 31
    • 85119663711 scopus 로고    scopus 로고
    • Detecting errors within a corpus using anomaly detection
    • Proceedings of the First Conference on North American Chapter of the Association for Computational Linguistics Seattle, Washington, April 29, May 04, Morgan Kaufmann Publishers, San Francisco, CA
    • E. Eskin, Detecting errors within a corpus using anomaly detection. In Proceedings of the First Conference on North American Chapter of the Association for Computational Linguistics (Seattle, Washington, April 29 - May 04, 2000). ACM International Conference Proceeding Series, vol. 4. Morgan Kaufmann Publishers, San Francisco, CA, 148-153.
    • (2000) ACM International Conference Proceeding Series , vol.4 , pp. 148-153
    • Eskin, E.1
  • 33
    • 33646553013 scopus 로고    scopus 로고
    • Fast Distributed Outlier Detection in Mixed-Attribute Data Sets
    • E. Otey, A. Ghoting and S. Parthasarathy, Fast Distributed Outlier Detection in Mixed-Attribute Data Sets, Data Mining and Knowledge Discovery 12(Issue 2-3) (2006), 203 228.
    • (2006) Data Mining and Knowledge Discovery , vol.12 , Issue.2-3 , pp. 203-228
    • Otey, E.1    Ghoting, A.2    Parthasarathy, S.3
  • 34
    • 51149098960 scopus 로고    scopus 로고
    • http://ww.jade.tilab.com/.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.