메뉴 건너뛰기




Volumn 21, Issue 7, 2008, Pages 515-529

An empirical study of a cross-level association rule mining approach to cold-start recommendations

Author keywords

Association rule mining; Cold start problem; Collaborative filtering; Recommender systems

Indexed keywords

ASSOCIATION RULE MINING; COLD START PROBLEMS; COLD-START PROBLEM; COLLABORATIVE FILTERING; RECOMMENDER SYSTEMS;

EID: 51049105928     PISSN: 09507051     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.knosys.2008.03.012     Document Type: Article
Times cited : (77)

References (41)
  • 1
    • 0027621699 scopus 로고    scopus 로고
    • R. Agrawal, T. Imielinski, A. Swami, Mining association rules between sets of items in large databases, in: Proceedings of the ACM SIGMOD International Conference on Management of Data, 1993.
    • R. Agrawal, T. Imielinski, A. Swami, Mining association rules between sets of items in large databases, in: Proceedings of the ACM SIGMOD International Conference on Management of Data, 1993.
  • 4
    • 0031640270 scopus 로고    scopus 로고
    • C. Basu, H. Hirsh, W. Cohen, Recommendation as classification: using social and content-based information in recommendation, in: Proceedings of the 15th National Conference on Artificial Intelligence, 1998.
    • C. Basu, H. Hirsh, W. Cohen, Recommendation as classification: using social and content-based information in recommendation, in: Proceedings of the 15th National Conference on Artificial Intelligence, 1998.
  • 5
    • 51049085109 scopus 로고    scopus 로고
    • D. Billsus, M. Pazzani, Learning collaborative information filters, in: Proceedings of the 15th International Conference on Machine Learning, 1998.
    • D. Billsus, M. Pazzani, Learning collaborative information filters, in: Proceedings of the 15th International Conference on Machine Learning, 1998.
  • 6
    • 51049098949 scopus 로고    scopus 로고
    • J.S. Breese, D. Heckerman, C. Kadie, Empirical analysis of predictive algorithms for collaborative filtering, in: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence, 1998.
    • J.S. Breese, D. Heckerman, C. Kadie, Empirical analysis of predictive algorithms for collaborative filtering, in: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence, 1998.
  • 7
    • 0031162961 scopus 로고    scopus 로고
    • S. Brin, R. Motwani, J.D. Ullman, S. Tsur, Dynamic itemset counting and implication rules for market basket data, in: Proceedings ACM SIGMOD International Conference on Management of Data, 1997.
    • S. Brin, R. Motwani, J.D. Ullman, S. Tsur, Dynamic itemset counting and implication rules for market basket data, in: Proceedings ACM SIGMOD International Conference on Management of Data, 1997.
  • 8
    • 51049102581 scopus 로고    scopus 로고
    • P.A. Flach, ICML'04 Tutorial on the many faces of ROC analysis in machine learning. Available from: .
    • P.A. Flach, ICML'04 Tutorial on the many faces of ROC analysis in machine learning. Available from: .
  • 9
    • 84976668719 scopus 로고
    • Using collaborative filtering to weave an information tapestry
    • Goldberg D., Nichols D., Oki B., and Terry D. Using collaborative filtering to weave an information tapestry. Communications of the ACM 35 12 (1992) 61-70
    • (1992) Communications of the ACM , vol.35 , Issue.12 , pp. 61-70
    • Goldberg, D.1    Nichols, D.2    Oki, B.3    Terry, D.4
  • 10
    • 0002549585 scopus 로고    scopus 로고
    • Eigentaste: a constant time collaborative filtering algorithm
    • Goldberg K.Y., Roeder T., Gupta D., and Perkins C. Eigentaste: a constant time collaborative filtering algorithm. Information Retrieval 4 2 (2001) 133-151
    • (2001) Information Retrieval , vol.4 , Issue.2 , pp. 133-151
    • Goldberg, K.Y.1    Roeder, T.2    Gupta, D.3    Perkins, C.4
  • 11
    • 0032596552 scopus 로고    scopus 로고
    • N. Good, J.B. Schafer, J. Konstan, A. Borchers, B. Sarwar, J. Herlocker, J. Riedl, Combining collaborative filtering with personal agents for better recommendations, in: Proceedings of Conference of the American Association of Artifical Intelligence, 1999.
    • N. Good, J.B. Schafer, J. Konstan, A. Borchers, B. Sarwar, J. Herlocker, J. Riedl, Combining collaborative filtering with personal agents for better recommendations, in: Proceedings of Conference of the American Association of Artifical Intelligence, 1999.
  • 12
    • 51049090796 scopus 로고    scopus 로고
    • GroupLens, MovieLens dataset, http://www.grouplens.org/.
    • GroupLens, MovieLens dataset, http://www.grouplens.org/.
  • 13
    • 51049107493 scopus 로고    scopus 로고
    • A. Gyenesei, Interestingness measures for fuzzy association rules, in: Proceedings of the 5th European Conference on Principles of Data Mining and Knowledge Discovery, 2001.
    • A. Gyenesei, Interestingness measures for fuzzy association rules, in: Proceedings of the 5th European Conference on Principles of Data Mining and Knowledge Discovery, 2001.
  • 14
    • 0033311838 scopus 로고    scopus 로고
    • Mining multiple-level association rules in large databases
    • Han J., and Fu Y. Mining multiple-level association rules in large databases. IEEE Transactions on Knowledge and Data Engineering 11 5 (1999) 798-804
    • (1999) IEEE Transactions on Knowledge and Data Engineering , vol.11 , Issue.5 , pp. 798-804
    • Han, J.1    Fu, Y.2
  • 16
    • 85026972772 scopus 로고    scopus 로고
    • T. Hofmann, Probabilistic latent semantic indexing, in: Proceedings of the 22nd International Conference on Research and Development in Information Retrieval, 1999.
    • T. Hofmann, Probabilistic latent semantic indexing, in: Proceedings of the 22nd International Conference on Research and Development in Information Retrieval, 1999.
  • 17
    • 84862271600 scopus 로고    scopus 로고
    • T. Hofmann, J. Puzicha, Latent class models for collaborative filtering, in: Proceedings of the International Joint Conference in Artificial Intelligence, 1999.
    • T. Hofmann, J. Puzicha, Latent class models for collaborative filtering, in: Proceedings of the International Joint Conference in Artificial Intelligence, 1999.
  • 18
    • 51049095457 scopus 로고    scopus 로고
    • T.-P. Hong, C.-Y. Lee, Learning fuzzy knowledge from training examples, in: Proceedings of the 7th ACM Conference on Information and Knowledge Management, 1998.
    • T.-P. Hong, C.-Y. Lee, Learning fuzzy knowledge from training examples, in: Proceedings of the 7th ACM Conference on Information and Knowledge Management, 1998.
  • 19
    • 35348870573 scopus 로고    scopus 로고
    • A comparative study of recommendation algorithms in e-commerce applications
    • Huang Z., Zeng D., and Chen H. A comparative study of recommendation algorithms in e-commerce applications. IEEE Intelligent Systems 22 5 (2007) 68-78
    • (2007) IEEE Intelligent Systems , vol.22 , Issue.5 , pp. 68-78
    • Huang, Z.1    Zeng, D.2    Chen, H.3
  • 21
    • 84945194085 scopus 로고    scopus 로고
    • C. Kim, J. Kim, A recommendation algorithm using multi-level association rules, in: Proceedings of the IEEE/WIC International Conference on Web Intelligence, 2003.
    • C. Kim, J. Kim, A recommendation algorithm using multi-level association rules, in: Proceedings of the IEEE/WIC International Conference on Web Intelligence, 2003.
  • 22
    • 51049101685 scopus 로고    scopus 로고
    • R. Kohavi, B. Becker, D. Sommerfield, Improving simple Bayes, in: Proceedings of European Conference on Machine Learning, 1997.
    • R. Kohavi, B. Becker, D. Sommerfield, Improving simple Bayes, in: Proceedings of European Conference on Machine Learning, 1997.
  • 24
    • 51049088623 scopus 로고    scopus 로고
    • C.W.K. Leung, S.C.F. Chan, Sentiment analysis of product reviews, Encyclopedia of Data Warehousing and Mining - Second Edition, Idea Group Inc. Available from:
    • C.W.K. Leung, S.C.F. Chan, Sentiment analysis of product reviews, Encyclopedia of Data Warehousing and Mining - Second Edition, Idea Group Inc. Available from:
  • 25
    • 33749362044 scopus 로고    scopus 로고
    • A collaborative filtering framework based on fuzzy association rules and multiple-level similarity
    • Leung C.W.K., Chan S.C.F., and Chung F.L. A collaborative filtering framework based on fuzzy association rules and multiple-level similarity. Knowledge and Information Systems 10 3 (2006) 357-381
    • (2006) Knowledge and Information Systems , vol.10 , Issue.3 , pp. 357-381
    • Leung, C.W.K.1    Chan, S.C.F.2    Chung, F.L.3
  • 26
    • 48149094387 scopus 로고    scopus 로고
    • C.W.K. Leung, S.C.F. Chan, F.L. Chung, Applying cross-level association rule mining to cold-start recommendations, in: Proceedings of the IEEE/WIC/ACM WI-IAT Workshop on Web Personalization and Recommender Systems, 2007.
    • C.W.K. Leung, S.C.F. Chan, F.L. Chung, Applying cross-level association rule mining to cold-start recommendations, in: Proceedings of the IEEE/WIC/ACM WI-IAT Workshop on Web Personalization and Recommender Systems, 2007.
  • 27
    • 79952248221 scopus 로고    scopus 로고
    • Evaluation of a rating inference approach to utilizing textual reviews for collaborative recommendation
    • World Scientific Publisher
    • Leung C.W.K., Chan S.C.F., and Chung F.L. Evaluation of a rating inference approach to utilizing textual reviews for collaborative recommendation. Cooperative Internet Computing (2008), World Scientific Publisher
    • (2008) Cooperative Internet Computing
    • Leung, C.W.K.1    Chan, S.C.F.2    Chung, F.L.3
  • 28
    • 0036103365 scopus 로고    scopus 로고
    • Efficient adaptive-support association rule mining for recommender systems
    • Lin W., Alvarez S.A., and Ruiz C. Efficient adaptive-support association rule mining for recommender systems. Data Mining and Knowledge Discovery 6 1 (2002) 83-105
    • (2002) Data Mining and Knowledge Discovery , vol.6 , Issue.1 , pp. 83-105
    • Lin, W.1    Alvarez, S.A.2    Ruiz, C.3
  • 29
    • 51049114473 scopus 로고    scopus 로고
    • C.D. Manning, P. Raghavan, H. Schutze, Introduction to Information Retrieval, Cambridge University Press, 2008 (Chapter 8). Available from:
    • C.D. Manning, P. Raghavan, H. Schutze, Introduction to Information Retrieval, Cambridge University Press, 2008 (Chapter 8). Available from:
  • 30
    • 51049115762 scopus 로고    scopus 로고
    • A. McCallum, K. Nigam, A comparison of event models for Naive Bayes text classification, in: Proceedings of the AAAI-98 Workshop on Learning for Text Categorization, 1998.
    • A. McCallum, K. Nigam, A comparison of event models for Naive Bayes text classification, in: Proceedings of the AAAI-98 Workshop on Learning for Text Categorization, 1998.
  • 31
    • 0036932094 scopus 로고    scopus 로고
    • P. Melville, R.J. Mooney, R. Nagarajan, Content-boosted collaborative filtering for improved recommendations, in: Proceedings of the 18th National Conference on Artificial Intelligence, 2002.
    • P. Melville, R.J. Mooney, R. Nagarajan, Content-boosted collaborative filtering for improved recommendations, in: Proceedings of the 18th National Conference on Artificial Intelligence, 2002.
  • 32
    • 0033653019 scopus 로고    scopus 로고
    • R. Mooney, L. Roy, Content-based book recommending using learning for text categorization, in: Proceedings of the 5th ACM Conference on Digital Libraries, 2000.
    • R. Mooney, L. Roy, Content-based book recommending using learning for text categorization, in: Proceedings of the 5th ACM Conference on Digital Libraries, 2000.
  • 33
    • 33749578362 scopus 로고    scopus 로고
    • S.T. Park, D. Pennock, O. Madani, N. Good, D. DeCoste, Naive filterbots for robust cold-start recommendations, in: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2006.
    • S.T. Park, D. Pennock, O. Madani, N. Good, D. DeCoste, Naive filterbots for robust cold-start recommendations, in: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2006.
  • 34
    • 51049117285 scopus 로고    scopus 로고
    • A. Popescul, L.H. Ungar, D.M. Pennock, S. Lawrence, Probabilistic models for unified collaborative and content-based recommendation in sparse-data environments, in: Proceedings of the 17th Conference on Uncertainty in Artificial Intelligence, 2001.
    • A. Popescul, L.H. Ungar, D.M. Pennock, S. Lawrence, Probabilistic models for unified collaborative and content-based recommendation in sparse-data environments, in: Proceedings of the 17th Conference on Uncertainty in Artificial Intelligence, 2001.
  • 35
    • 0032276564 scopus 로고    scopus 로고
    • B. Sarwar, J. Konstan, A. Borchers, J. Herlocker, B. Miller, J. Riedl, Using filtering agents to improve prediction quality in the GroupLens research collaborative filtering system, in: Proceedings of the ACM conference on Computer Supported Cooperative Work, 1998.
    • B. Sarwar, J. Konstan, A. Borchers, J. Herlocker, B. Miller, J. Riedl, Using filtering agents to improve prediction quality in the GroupLens research collaborative filtering system, in: Proceedings of the ACM conference on Computer Supported Cooperative Work, 1998.
  • 36
    • 0036989477 scopus 로고    scopus 로고
    • A. Schein, A. Popescul, L.H. Ungar, D.M. Pennock, Methods and metrics for cold start recommendations, in: Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 2002.
    • A. Schein, A. Popescul, L.H. Ungar, D.M. Pennock, Methods and metrics for cold start recommendations, in: Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 2002.
  • 37
    • 85124915629 scopus 로고    scopus 로고
    • A.I. Schein, A. Popescul, L.H. Ungar, D.M. Pennock, CROC: a new evaluation criterion for recommender systems, M.E. Zurko, A. Greenwald (Eds.), Electronic Commerce Research, Special Issue on World Wide Web Electronic Commerce, Security and Privacy, vol. 5 (1), 2005, pp.51-74.
    • A.I. Schein, A. Popescul, L.H. Ungar, D.M. Pennock, CROC: a new evaluation criterion for recommender systems, M.E. Zurko, A. Greenwald (Eds.), Electronic Commerce Research, Special Issue on World Wide Web Electronic Commerce, Security and Privacy, vol. 5 (1), 2005, pp.51-74.
  • 38
    • 51049099588 scopus 로고    scopus 로고
    • R. Srikant, R. Agrawal, Mining generalized association rules, in: Proceedings of the 21st International Conference on Very Large Databases, 1995.
    • R. Srikant, R. Agrawal, Mining generalized association rules, in: Proceedings of the 21st International Conference on Very Large Databases, 1995.
  • 39
    • 22044433094 scopus 로고    scopus 로고
    • K. Wang, Y. He, J. Han, Mining frequent itemsets using support constraints, in: Proceedings of the 26th International Conference on Very Large Databases, 2000.
    • K. Wang, Y. He, J. Han, Mining frequent itemsets using support constraints, in: Proceedings of the 26th International Conference on Very Large Databases, 2000.
  • 40
    • 51049113409 scopus 로고    scopus 로고
    • K. Wang, H.Q. Liu, Mining is-part-of association patterns from semistructured data, in: Proceedings of the 9th IFIP 2.6Working Conference on Database Semantics, 2000.
    • K. Wang, H.Q. Liu, Mining is-part-of association patterns from semistructured data, in: Proceedings of the 9th IFIP 2.6Working Conference on Database Semantics, 2000.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.