메뉴 건너뛰기




Volumn 21, Issue 7, 2008, Pages 612-616

Unsupervised data pruning for clustering of noisy data

Author keywords

Clustering analysis; Clustering ensembles; Data pruning

Indexed keywords

BOOLEAN FUNCTIONS; CLUSTERING ALGORITHMS; FLOW OF SOLIDS; LABELING; LABELS; LEARNING ALGORITHMS; LEARNING SYSTEMS;

EID: 50949097414     PISSN: 09507051     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.knosys.2008.03.052     Document Type: Article
Times cited : (9)

References (21)
  • 1
    • 24644505329 scopus 로고    scopus 로고
    • A. Angelova, Y. Abu-Mostafa, P. Perona, Pruning training sets for learning of object categories, in: IEEE Conference on Computer Vision and Pattern Recognition, 2005, pp. 494-501.
    • A. Angelova, Y. Abu-Mostafa, P. Perona, Pruning training sets for learning of object categories, in: IEEE Conference on Computer Vision and Pattern Recognition, 2005, pp. 494-501.
  • 2
    • 50949100235 scopus 로고    scopus 로고
    • J. Kubica, A. Moore, Probabilistic noise identification and data cleaning, Technical Report CMU-RI-TR-02-26, CMU, 2002.
    • J. Kubica, A. Moore, Probabilistic noise identification and data cleaning, Technical Report CMU-RI-TR-02-26, CMU, 2002.
  • 3
    • 9444231677 scopus 로고    scopus 로고
    • X. Zhu, X. Wu, Y. Yang, Error detection and impact-sensitive instance ranking in noisy data, in: National Conference on Artificial Intelligence, 2004, pp. 378-384.
    • X. Zhu, X. Wu, Y. Yang, Error detection and impact-sensitive instance ranking in noisy data, in: National Conference on Artificial Intelligence, 2004, pp. 378-384.
  • 5
    • 0030354375 scopus 로고    scopus 로고
    • C.E. Brodley, M.A. Friedl, Identifying and eliminating mislabeled training instances, in: National Conference on Artificial Intelligence, 1996, pp. 799-805.
    • C.E. Brodley, M.A. Friedl, Identifying and eliminating mislabeled training instances, in: National Conference on Artificial Intelligence, 1996, pp. 799-805.
  • 6
    • 50949134557 scopus 로고    scopus 로고
    • D. Gamberger, N. Lavrac, G. Groselj, Experiments with noisy filtering in a medical domain, in: International Conference on Machine Learning, 1999, pp. 143-151.
    • D. Gamberger, N. Lavrac, G. Groselj, Experiments with noisy filtering in a medical domain, in: International Conference on Machine Learning, 1999, pp. 143-151.
  • 7
    • 50949099976 scopus 로고    scopus 로고
    • I. Dagan, S.P. Engelson, Committee-based sampling for training probabilistic classifier, in: International Conference on Machine Learning, 1995, pp. 150-157.
    • I. Dagan, S.P. Engelson, Committee-based sampling for training probabilistic classifier, in: International Conference on Machine Learning, 1995, pp. 150-157.
  • 8
    • 0031209604 scopus 로고    scopus 로고
    • Selective sampling using the query by committee algorithm
    • Freund Y., Seung H.S., Shamir E., and Tishby N. Selective sampling using the query by committee algorithm. Machine Learning 28 (1997) 133-168
    • (1997) Machine Learning , vol.28 , pp. 133-168
    • Freund, Y.1    Seung, H.S.2    Shamir, E.3    Tishby, N.4
  • 10
    • 33747739087 scopus 로고
    • Robust decision trees: removing outliers from databases
    • John G.H. Robust decision trees: removing outliers from databases. Knowledge Discovery and Data Mining (1995) 174-179
    • (1995) Knowledge Discovery and Data Mining , pp. 174-179
    • John, G.H.1
  • 12
    • 1942484424 scopus 로고    scopus 로고
    • X. Zhu, X. Wu, S. Chen, Eliminating class noise in large datasets, in: International Conference on Machine Learning, 2003, pp. 920-927.
    • X. Zhu, X. Wu, S. Chen, Eliminating class noise in large datasets, in: International Conference on Machine Learning, 2003, pp. 920-927.
  • 13
    • 0041965980 scopus 로고    scopus 로고
    • Clustering ensembles - a knowledge reuse framework for combining multiple partitions
    • Strehl A., and Ghosh J. Clustering ensembles - a knowledge reuse framework for combining multiple partitions. The Journal of Machine Learning Research 3 (2002) 583-617
    • (2002) The Journal of Machine Learning Research , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2
  • 15
    • 1942517297 scopus 로고    scopus 로고
    • X.Z. Fern, C.E. Brodley, Clustering ensembles for high dimensional data clustering, in: International Conference on Machine Learning, 2003, pp. 186-193.
    • X.Z. Fern, C.E. Brodley, Clustering ensembles for high dimensional data clustering, in: International Conference on Machine Learning, 2003, pp. 186-193.
  • 16
    • 50949104359 scopus 로고    scopus 로고
    • C. Blake, C. Merz, UCI repository of machine learning databases. Available from: .
    • C. Blake, C. Merz, UCI repository of machine learning databases. Available from: .
  • 17
    • 84950632109 scopus 로고    scopus 로고
    • W.M. Rand, Objective criteria for the evaluation of clustering methods, Journal of American Statistical Association, 66, 846-850.
    • W.M. Rand, Objective criteria for the evaluation of clustering methods, Journal of American Statistical Association, 66, 846-850.
  • 18
    • 50949128042 scopus 로고    scopus 로고
    • Y. Hong, S. Kwong, Y. Chang, Q. Ren, Clustering ensembles guided unsupervised feature selection using population based incremental learning algorithm, Pattern Recognition, in press.
    • Y. Hong, S. Kwong, Y. Chang, Q. Ren, Clustering ensembles guided unsupervised feature selection using population based incremental learning algorithm, Pattern Recognition, in press.
  • 19
    • 38749139222 scopus 로고    scopus 로고
    • Consensus unsupervised feature ranking from multiple views
    • Hong Y., Kwong S., Chang Y., and Ren Q. Consensus unsupervised feature ranking from multiple views. Pattern Recognition Letters 29 5 (2008) 595-602
    • (2008) Pattern Recognition Letters , vol.29 , Issue.5 , pp. 595-602
    • Hong, Y.1    Kwong, S.2    Chang, Y.3    Ren, Q.4
  • 21
    • 50949132331 scopus 로고    scopus 로고
    • Y. Hong, S. Kwong, Learning assignment order of instances for constrained clustering algorithm, IEEE Transactions on System, Man and Cybernetics, Part B, submitted for publication.
    • Y. Hong, S. Kwong, Learning assignment order of instances for constrained clustering algorithm, IEEE Transactions on System, Man and Cybernetics, Part B, submitted for publication.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.