메뉴 건너뛰기




Volumn , Issue , 2008, Pages 297-300

Modeling large-scale gene regulatory networks using gene ontology-based clustering and dynamic bayesian networks

Author keywords

Dynamic Bayesian network; Gene ontology; Gene regulsatory network; Genetic algorithm

Indexed keywords

BIOASSAY; BIOCHIPS; BIOCOMMUNICATIONS; BIOINFORMATICS; BIOMEDICAL ENGINEERING; CHLORINE COMPOUNDS; COMPUTER NETWORKS; DISTRIBUTED PARAMETER NETWORKS; GENE EXPRESSION; GENES; INFERENCE ENGINES; INFORMATION SCIENCE; INTELLIGENT NETWORKS; MICROARRAYS; NUCLEIC ACIDS; ONTOLOGY; ORGANIC ACIDS; SPEECH ANALYSIS; SPEECH RECOGNITION; TIME SERIES ANALYSIS;

EID: 50949095009     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICBBE.2008.76     Document Type: Conference Paper
Times cited : (7)

References (15)
  • 1
    • 34848893948 scopus 로고    scopus 로고
    • Modeling of gene regulatory networks with hybrid differential evolution and particle swarm optimization
    • R. Xu, G.K. Venayagamoorthy, D.C. Wunsch, "Modeling of gene regulatory networks with hybrid differential evolution and particle swarm optimization", Neural Networks, vol. 20 ,pp. 917-927, 2007.
    • (2007) Neural Networks , vol.20 , pp. 917-927
    • Xu, R.1    Venayagamoorthy, G.K.2    Wunsch, D.C.3
  • 2
    • 33947685522 scopus 로고    scopus 로고
    • Modeling gene regulatory networks with piecewise linear differential equations
    • J. Gebert, N. Radde, G.W. Weber, "Modeling gene regulatory networks with piecewise linear differential equations", European Journal of Operational Research, vol. 181, pp. 1148-1165, 2007.
    • (2007) European Journal of Operational Research , vol.181 , pp. 1148-1165
    • Gebert, J.1    Radde, N.2    Weber, G.W.3
  • 3
    • 14644401169 scopus 로고    scopus 로고
    • Reconstructing gene regulatory networks from time-series microarray data
    • S.P. Li, J.J. Tseng, S.C. Wang, "Reconstructing gene regulatory networks from time-series microarray data", Physica A 350, pp. 63-69, 2005.
    • (2005) Physica A , vol.350 , pp. 63-69
    • Li, S.P.1    Tseng, J.J.2    Wang, S.C.3
  • 4
    • 3042738945 scopus 로고    scopus 로고
    • Dynamic Bayesian Network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data
    • S. Kim, S. Imoto, S. Miyano, "Dynamic Bayesian Network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data", BioSystems, vol. 75, pp. 57-65, 2004.
    • (2004) BioSystems , vol.75 , pp. 57-65
    • Kim, S.1    Imoto, S.2    Miyano, S.3
  • 5
    • 78449303632 scopus 로고    scopus 로고
    • Modeling multiple time units delayed gene regulatory network using dynamic Bayesian network
    • Workshops
    • Z. Xing, D. Wu, "Modeling multiple time units delayed gene regulatory network using dynamic Bayesian network", 6th IEEE International Conference on Data Mining, Workshops, 2006.
    • (2006) 6th IEEE International Conference on Data Mining
    • Xing, Z.1    Wu, D.2
  • 7
    • 0031742022 scopus 로고    scopus 로고
    • Comprehensive identification of cell cycle regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization
    • P.T. Spellman, G. Sherlock, et al., "Comprehensive identification of cell cycle regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization", Molecular Biology of the Cell, vol. 9, pp. 3273-3297, 1998.
    • (1998) Molecular Biology of the Cell , vol.9 , pp. 3273-3297
    • Spellman, P.T.1    Sherlock, G.2
  • 8
    • 84938198522 scopus 로고    scopus 로고
    • Home page of KEGG: http://www.genome.ad.jp/kegg
    • Home page of KEGG: http://www.genome.ad.jp/kegg
  • 9
    • 20744441547 scopus 로고    scopus 로고
    • Modularized learning of genetic interaction networks from biological annotations and mRNA expression data
    • P.H. Lee, D. Lee, "Modularized learning of genetic interaction networks from biological annotations and mRNA expression data", Bioinformatics, Systems biology, vol. 21, no. 11, pp. 2739-2747, 2005.
    • (2005) Bioinformatics, Systems biology , vol.21 , Issue.11 , pp. 2739-2747
    • Lee, P.H.1    Lee, D.2
  • 11
    • 0042629738 scopus 로고    scopus 로고
    • Trajectory clustering: A non-parametric method for grouping gene expression time courses, with applocations to mammary development
    • T.L. Phang, M.C. Neville, M. Rudolph, L. Hunter, "Trajectory clustering: A non-parametric method for grouping gene expression time courses, with applocations to mammary development", Pacific Symposium on Biocomputing 8, pp. 351-362, 2003.
    • (2003) Pacific Symposium on Biocomputing , vol.8 , pp. 351-362
    • Phang, T.L.1    Neville, M.C.2    Rudolph, M.3    Hunter, L.4
  • 12
    • 84938212662 scopus 로고    scopus 로고
    • http://www.geneontology.org/
  • 13
    • 84938216938 scopus 로고    scopus 로고
    • http://db.yeastgenome.org/cgi-bin/batchDownload
  • 14
    • 0034960264 scopus 로고    scopus 로고
    • Missing value estimation methods for DNA microarrays
    • O. Troyanskaya, M. Cantor et al., "Missing value estimation methods for DNA microarrays", Bioinformatics, vol. 17, no. 6, pp. 520-525, 2001
    • (2001) Bioinformatics , vol.17 , Issue.6 , pp. 520-525
    • Troyanskaya, O.1    Cantor, M.2
  • 15
    • 33745622668 scopus 로고    scopus 로고
    • An effective structure learning method for constructing gene networks
    • X-w Chen, G. Anantha and X. Wang, "An effective structure learning method for constructing gene networks",Bioinformatics, vol. 22, no. 11, pp. 1367-1374, 2006.
    • (2006) Bioinformatics , vol.22 , Issue.11 , pp. 1367-1374
    • Chen, X.-W.1    Anantha, G.2    Wang, X.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.