-
1
-
-
0000300354
-
-
PLRBAQ 0556-2805 10.1103/PhysRevB.9.4760
-
T. Fulton and L. Dunkleberger, Phys. Rev. B PLRBAQ 0556-2805 10.1103/PhysRevB.9.4760 9, 4760 (1974).
-
(1974)
Phys. Rev. B
, vol.9
, pp. 4760
-
-
Fulton, T.1
Dunkleberger, L.2
-
2
-
-
0001143342
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.42.9903
-
R. Kautz and J. Martinis, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.42.9903 42, 9903 (1990).
-
(1990)
Phys. Rev. B
, vol.42
, pp. 9903
-
-
Kautz, R.1
Martinis, J.2
-
3
-
-
1342344135
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.69.014506
-
A. Franz, Y. Koval, D. Vasyukov, P. Müller, H. Schneidewind, D. Ryndyk, J. Keller, and C. Helm, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.69.014506 69, 014506 (2004).
-
(2004)
Phys. Rev. B
, vol.69
, pp. 014506
-
-
Franz, A.1
Koval, Y.2
Vasyukov, D.3
Müller, P.4
Schneidewind, H.5
Ryndyk, D.6
Keller, J.7
Helm, C.8
-
4
-
-
27744498420
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.94.247002
-
J. Kivioja, T. Nieminen, J. Claudon, O. Buisson, F. Hekking, and J. Pekola, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.94.247002 94, 247002 (2005).
-
(2005)
Phys. Rev. Lett.
, vol.94
, pp. 247002
-
-
Kivioja, J.1
Nieminen, T.2
Claudon, J.3
Buisson, O.4
Hekking, F.5
Pekola, J.6
-
5
-
-
28844485134
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.95.157002
-
V. Krasnov, T. Bauch, S. Intiso, E. Hürfeld, T. Akazaki, H. Takayanagi, and P. Delsing, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.95.157002 95, 157002 (2005).
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 157002
-
-
Krasnov, V.1
Bauch, T.2
Intiso, S.3
Hürfeld, E.4
Akazaki, T.5
Takayanagi, H.6
Delsing, P.7
-
6
-
-
28344449847
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.71.220509
-
J. Männik, S. Li, W. Qiu, Q. Chen, V. Patel, S. Han, and J. Lukens, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.71.220509 71, 220509 (2005).
-
(2005)
Phys. Rev. B
, vol.71
, pp. 220509
-
-
Männik, J.1
Li, S.2
Qiu, W.3
Chen, Q.4
Patel, V.5
Han, S.6
Lukens, J.7
-
7
-
-
0007682595
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.26.2805
-
E. Ben-Jacob, D. Bergman, B. Matkowsky, and Z. Schuss, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.26.2805 26, 2805 (1982).
-
(1982)
Phys. Rev. a
, vol.26
, pp. 2805
-
-
Ben-Jacob, E.1
Bergman, D.2
Matkowsky, B.3
Schuss, Z.4
-
11
-
-
50849126215
-
-
This period would be set by the details of an experiment-see Sec. 4.
-
This period would be set by the details of an experiment-see Sec. 4.
-
-
-
-
13
-
-
50849087865
-
-
The McCumber parameter βc ≡ Q2 is also sometimes used to characterize the damping.
-
The McCumber parameter βc ≡ Q2 is also sometimes used to characterize the damping.
-
-
-
-
14
-
-
34547275473
-
-
PHYSAG 0031-8914 10.1016/S0031-8914(40)90098-2
-
H. Kramers, Physica (Amsterdam) PHYSAG 0031-8914 10.1016/S0031-8914(40) 90098-2 7, 284 (1940).
-
(1940)
Physica (Amsterdam)
, vol.7
, pp. 284
-
-
Kramers, H.1
-
15
-
-
34548176848
-
-
PHYCE6 0921-4534 10.1016/j.physc.2007.04.156
-
J. Fenton, M. Korsah, C. Grovenor, and P. Warburton, Physica C PHYCE6 0921-4534 10.1016/j.physc.2007.04.156 460-462, 1470 (2007).
-
(2007)
Physica C
, vol.460-462
, pp. 1470
-
-
Fenton, J.1
Korsah, M.2
Grovenor, C.3
Warburton, P.4
-
16
-
-
50849110000
-
-
Note that the numerator is the total probability of there having been no switch as the current ramps from 0 to I, so that the quotient represents the average probability per unit current of there having been no switch.
-
Note that the numerator is the total probability of there having been no switch as the current ramps from 0 to I, so that the quotient represents the average probability per unit current of there having been no switch.
-
-
-
-
17
-
-
50849145337
-
-
See also the discussion in Sec. 3.
-
See also the discussion in Sec. 3.
-
-
-
-
18
-
-
50849138011
-
-
The counterintuitive nature of the accompanying decrease in the width with increasing temperature has previously been highlighted by Krasnov
-
The counterintuitive nature of the accompanying decrease in the width with increasing temperature has previously been highlighted by Krasnov in Refs..
-
-
-
-
19
-
-
36149011501
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.11.104
-
V. Ambegaokar and A. Baratoff, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.11.104 11, 104 (1963).
-
(1963)
Phys. Rev. Lett.
, vol.11
, pp. 104
-
-
Ambegaokar, V.1
Baratoff, A.2
-
20
-
-
50849100576
-
-
Note that, even above T high, zero voltage is expected for I< IEI and so the low-bias phase-diffusion voltage remains zero.
-
Note that, even above T high, zero voltage is expected for I< IEI and so the low-bias phase-diffusion voltage remains zero.
-
-
-
-
22
-
-
0015604155
-
-
JAPIAU 0021-8979 10.1063/1.1662354
-
H. Zappe, J. Appl. Phys. JAPIAU 0021-8979 10.1063/1.1662354 44, 1371 (1973).
-
(1973)
J. Appl. Phys.
, vol.44
, pp. 1371
-
-
Zappe, H.1
-
23
-
-
50849143974
-
-
Additionally, in a theoretical paper, Chen
-
Additionally, in a theoretical paper, Chen (Ref.) showed that close to the fluctuation-free return current, the voltage departs from V=IR. However, we neglect that dependence here.
-
-
-
-
24
-
-
0000997641
-
-
JAPIAU 0021-8979 10.1063/1.371704
-
M. Castellano, G. Torrioli, F. Chiarello, C. Cosmelli, and P. Carelli, J. Appl. Phys. JAPIAU 0021-8979 10.1063/1.371704 86, 6405 (1999).
-
(1999)
J. Appl. Phys.
, vol.86
, pp. 6405
-
-
Castellano, M.1
Torrioli, G.2
Chiarello, F.3
Cosmelli, C.4
Carelli, P.5
-
25
-
-
50849135716
-
-
The distribution was scaled by dividing by the total probability of a switch following a single escape event.
-
The distribution was scaled by dividing by the total probability of a switch following a single escape event.
-
-
-
-
26
-
-
37349002381
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.76.224517
-
V. Krasnov, T. Golod, T. Bauch, and P. Delsing, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.76.224517 76, 224517 (2007).
-
(2007)
Phys. Rev. B
, vol.76
, pp. 224517
-
-
Krasnov, V.1
Golod, T.2
Bauch, T.3
Delsing, P.4
-
27
-
-
50849124952
-
-
For an escape event involving n retraps before eventual escape in a time Δt, the average time for each escape is Δt/ (n+1), implying an equal probability of each escape event in that average time. However, the probabilities of the first n escapes were set (Ref.) to 1, with the (n+1) th escape being assigned the probability ΓΔt/ (n+1). More rigorously, the escape rate could have been expressed by integrating over all possible values of the time te for each escape, subject to the constraint te =Δt.
-
For an escape event involving n retraps before eventual escape in a time Δt, the average time for each escape is Δt/ (n+1), implying an equal probability of each escape event in that average time. However, the probabilities of the first n escapes were set (Ref.) to 1, with the (n+1) th escape being assigned the probability ΓΔt/ (n+1). More rigorously, the escape rate could have been expressed by integrating over all possible values of the time te for each escape, subject to the constraint te =Δt.
-
-
-
-
28
-
-
50849139003
-
-
J. Männik (private communication).
-
-
-
Männik, J.1
|