-
1
-
-
0035535380
-
-
RMPHAT 0034-6861 10.1103/RevModPhys.73.515
-
S. Baroni, Rev. Mod. Phys. RMPHAT 0034-6861 10.1103/RevModPhys.73.515 73, 515 (2001).
-
(2001)
Rev. Mod. Phys.
, vol.73
, pp. 515
-
-
Baroni, S.1
-
2
-
-
33744691386
-
-
LDA, GGA and B3LYP refer, respectively, to PRLTAO 0031-9007 10.1103/PhysRevLett.45.566
-
LDA, GGA and B3LYP refer, respectively, to D. M. Ceperley, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.45.566 45, 566 (1980)
-
(1980)
Phys. Rev. Lett.
, vol.45
, pp. 566
-
-
Ceperley, D.M.1
-
3
-
-
4243943295
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.77.3865
-
J. P. Perdew, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.77. 3865 77, 3865 (1996)
-
(1996)
Phys. Rev. Lett.
, vol.77
, pp. 3865
-
-
Perdew, J.P.1
-
4
-
-
0000189651
-
-
JCPSA6 0021-9606 10.1063/1.464913
-
A. D. Becke, J. Chem. Phys. JCPSA6 0021-9606 10.1063/1.464913 98, 5648 (1993).
-
(1993)
J. Chem. Phys.
, vol.98
, pp. 5648
-
-
Becke, A.D.1
-
5
-
-
1542388160
-
-
RPPHAG 0034-4885 10.1088/0034-4885/61/3/002
-
F. Aryasetiawan, Rep. Prog. Phys. RPPHAG 0034-4885 10.1088/0034-4885/61/ 3/002 61, 237 (1998)
-
(1998)
Rep. Prog. Phys.
, vol.61
, pp. 237
-
-
Aryasetiawan, F.1
-
7
-
-
0036057017
-
-
RMPHAT 0034-6861 10.1103/RevModPhys.74.601
-
G. Onida, Rev. Mod. Phys. RMPHAT 0034-6861 10.1103/RevModPhys.74.601 74, 601 (2002).
-
(2002)
Rev. Mod. Phys.
, vol.74
, pp. 601
-
-
Onida, G.1
-
9
-
-
33750459007
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.97.187401
-
A. C. Ferrari, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.97. 187401 97, 187401 (2006)
-
(2006)
Phys. Rev. Lett.
, vol.97
, pp. 187401
-
-
Ferrari, A.C.1
-
10
-
-
33847762932
-
-
NALEFD 1530-6984 10.1021/nl061702a
-
D. Graf, Nano Lett. NALEFD 1530-6984 10.1021/nl061702a 7, 238 (2007).
-
(2007)
Nano Lett.
, vol.7
, pp. 238
-
-
Graf, D.1
-
11
-
-
17944383013
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.84.2941
-
Z. Yao, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.84.2941 84, 2941 (2000).
-
(2000)
Phys. Rev. Lett.
, vol.84
, pp. 2941
-
-
Yao, Z.1
-
12
-
-
19744365772
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.93.185503
-
S. Piscanec, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.93. 185503 93, 185503 (2004).
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 185503
-
-
Piscanec, S.1
-
13
-
-
1642585850
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.92.075501
-
J. Maultzsch, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.92. 075501 92, 075501 (2004).
-
(2004)
Phys. Rev. Lett.
, vol.92
, pp. 075501
-
-
Maultzsch, J.1
-
14
-
-
34547542870
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.76.035439
-
M. Mohr, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.76.035439 76, 035439 (2007).
-
(2007)
Phys. Rev. B
, vol.76
, pp. 035439
-
-
Mohr, M.1
-
15
-
-
0032066496
-
-
JNCSBJ 0022-3093 10.1016/S0022-3093(98)00349-4
-
I. Pócsik, J. Non-Cryst. Solids JNCSBJ 0022-3093 10.1016/S0022-3093(98)00349-4 227, 1083 (1998).
-
(1998)
J. Non-Cryst. Solids
, vol.227
, pp. 1083
-
-
Pócsik, I.1
-
16
-
-
0037116018
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.66.245410
-
P. H. Tan, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.66.245410 66, 245410 (2002).
-
(2002)
Phys. Rev. B
, vol.66
, pp. 245410
-
-
Tan, P.H.1
-
17
-
-
42749108650
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.70.155403
-
J. Maultzsch, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.70.155403 70, 155403 (2004).
-
(2004)
Phys. Rev. B
, vol.70
, pp. 155403
-
-
Maultzsch, J.1
-
18
-
-
0034429029
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.85.5214
-
C. Thomsen, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.85.5214 85, 5214 (2000).
-
(2000)
Phys. Rev. Lett.
, vol.85
, pp. 5214
-
-
Thomsen, C.1
-
19
-
-
38349148384
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.77.041409
-
D. M. Basko, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.77.041409 77, 041409 (R) (2008).
-
(2008)
Phys. Rev. B
, vol.77
, pp. 041409
-
-
Basko, D.M.1
-
20
-
-
50849129299
-
-
Calculations were done as in Ref.. Technical details and thus phonon dispersions are the same as in Ref..
-
Calculations were done as in Ref.. Technical details and thus phonon dispersions are the same as in Ref..
-
-
-
-
21
-
-
28644440569
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.71.161403
-
S. Y. Zhou, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.71.161403 71, 161403 (R) (2005)
-
(2005)
Phys. Rev. B
, vol.71
, pp. 161403
-
-
Zhou, S.Y.1
-
22
-
-
0004011357
-
-
C. Y. Fong (World Scientific, Singapore
-
S. G. Louie, in Topics in Computational Materials Science, editor by, C. Y. Fong, (World Scientific, Singapore, 1997), p. 96.
-
(1997)
Topics in Computational Materials Science
, pp. 96
-
-
Louie, S.G.1
-
23
-
-
38549135180
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.100.037601
-
A. Grüneis, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett. 100.037601 100, 037601 (2008).
-
(2008)
Phys. Rev. Lett.
, vol.100
, pp. 037601
-
-
Grüneis, A.1
-
24
-
-
50849123252
-
-
LDA and GGA calculations were done with the code PWSCF
-
LDA and GGA calculations were done with the code PWSCF (http://www.quantum-espresso.org), with pseudopotentials of the type
-
-
-
-
25
-
-
33645426115
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.43.1993
-
N. Troullier, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.43.1993 43, 1993 (1991).
-
(1991)
Phys. Rev. B
, vol.43
, pp. 1993
-
-
Troullier, N.1
-
26
-
-
50849121210
-
-
GW calculations were done with the code YAMBO (the YAMBO project
-
GW calculations were done with the code YAMBO (the YAMBO project, http://www.yambo-code.org/), within the nonself-consistent G0 W0 approximation starting from DFT-LDA wave functions and using a plasmon-pole model for the screening, following
-
-
-
-
27
-
-
25544479230
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.34.5390
-
M. S. Hybertsen, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.34.5390 34, 5390 (1986).
-
(1986)
Phys. Rev. B
, vol.34
, pp. 5390
-
-
Hybertsen, M.S.1
-
28
-
-
1942451474
-
-
HF and B3LYP calculations were done with the code CRYSTAL (University of Torino, Torino
-
HF and B3LYP calculations were done with the code CRYSTAL (V. R. Saunders, CRYSTAL03 Users Manual (University of Torino, Torino, 2003), using the TZ basis by Dunning (without the diffuse P function).
-
(2003)
CRYSTAL03 Users Manual
-
-
Saunders, V.R.1
-
29
-
-
50849126197
-
-
For graphite we used the experimental lattice parameters (a=2.46 Å c=6.708 Å). For graphene we used a=2.46Å and a vacuum layer of 20 a.u. EPCs were calculated on a structure distorted by d=0.01Å a.u. For graphene, the electronic integration on the 1×1 cell was done with a 18×18×1 grid for LDA/GGA, 36×36×1 for GW, and 66×66×1 for B3LYP/HF. For graphite it was 18×18×6. For the 3×3 cell we used the nearest equivalent k grid. Plane waves are expanded up to 60-Ry cutoff. We used a Fermi-Dirac smearing with 0.002-Ry width for B3LYP/HF/GW and a Gaussian smearing with 0.02-Ry width for LDA/GGA.
-
For graphite we used the experimental lattice parameters (a=2.46 Åc=6.708Å). For graphene we used a=2.46Å and a vacuum layer of 20 a.u. EPCs were calculated on a structure distorted by d=0.01Å a.u. For graphene, the electronic integration on the 1×1 cell was done with a 18×18×1 grid for LDA/GGA, 36×36×1 for GW, and 66×66×1 for B3LYP/HF. For graphite it was 18×18×6. For the 3×3 cell we used the nearest equivalent k grid. Plane waves are expanded up to 60-Ry cutoff. We used a Fermi-Dirac smearing with 0.002-Ry width for B3LYP/HF/GW and a Gaussian smearing with 0.02-Ry width for LDA/GGA.
-
-
-
-
30
-
-
36149021290
-
-
PHRVAO 0031-899X 10.1103/PhysRev.109.272
-
J. C. Slonczewski, Phys. Rev. PHRVAO 0031-899X 10.1103/PhysRev.109.272 109, 272 (1958)
-
(1958)
Phys. Rev.
, vol.109
, pp. 272
-
-
Slonczewski, J.C.1
-
31
-
-
33847655495
-
-
See also Suppl. information to NMAACR 1476-1122 10.1038/nmat1846
-
See also Suppl. information to S. Pisana, Nat. Mater. NMAACR 1476-1122 10.1038/nmat1846 6, 198 (2007).
-
(2007)
Nat. Mater.
, vol.6
, pp. 198
-
-
Pisana, S.1
-
32
-
-
50849106227
-
-
In graphite, at the high-symmetry H point the four π bands are degenerate two by two, Δ 0 being the energy difference. By displacing the atoms according to the Γ E2g phonon, these bands remain degenerate and the energy difference is Δ. In analogy to Eqs. 3 4 we define DΓ2 F ̄ = (Δ 2 -Δ 02) / (16 d2). By displacing the atoms according to the K A1′ phonon, the four bands are no longer degenerate, being π (π) the two bands which are up (down) shifted and Δ= π - π. We define DK2 F ̄ = (Δ 2 ̄ -Δ 02) / (8 d2), where Δ 2 ̄ indicates the average between the four possible π -π couples.
-
In graphite, at the high-symmetry H point the four π bands are degenerate two by two, Δ 0 being the energy difference. By displacing the atoms according to the Γ E2g phonon, these bands remain degenerate and the energy difference is Δ. In analogy to Eqs. 3 4 we define DΓ2 F̄ = (Δ 2 -Δ 02) / (16 d2). By displacing the atoms according to the K A1′ phonon, the four bands are no longer degenerate, being π (π) the two bands which are up (down) shifted and Δ= π - π. We define DK2 F ̄ = (Δ 2 ̄ -Δ 02) / (8 d2), where Δ 2 ̄ indicates the average between the four possible π -π couples.
-
-
-
-
33
-
-
50849089120
-
-
In principle, a direct calculation of ωK GW (and thus of BK GW) could be obtained, e.g., by finite differences from a prohibitively expensive GW total energy calculation.
-
In principle, a direct calculation of ωK GW (and thus of BK GW) could be obtained, e.g., by finite differences from a prohibitively expensive GW total energy calculation.
-
-
-
-
34
-
-
33846852402
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.98.067005
-
P. Zhang, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.98.067005 98, 067005 (2007).
-
(2007)
Phys. Rev. Lett.
, vol.98
, pp. 067005
-
-
Zhang, P.1
|