-
1
-
-
77956888769
-
Causal diagrams for empirical research
-
Pearl J. Causal diagrams for empirical research. Biometrika. 1995;82: 669-688.
-
(1995)
Biometrika
, vol.82
, pp. 669-688
-
-
Pearl, J.1
-
3
-
-
0035063108
-
Data, design, and background knowledge in etiologic inference
-
Robins JM. Data, design, and background knowledge in etiologic inference. Epidemiology. 2001;12:313-320.
-
(2001)
Epidemiology
, vol.12
, pp. 313-320
-
-
Robins, J.M.1
-
4
-
-
0037080447
-
Causal knowledge as a prerequisite for confounding evaluation: An application to birth defects epidemiology
-
Hernán MA, Hernández-Díaz S, Werler MM, et al. Causal knowledge as a prerequisite for confounding evaluation: an application to birth defects epidemiology. Am J Epidemiol. 2002;155:176-184.
-
(2002)
Am J Epidemiol
, vol.155
, pp. 176-184
-
-
Hernán, M.A.1
Hernández-Díaz, S.2
Werler, M.M.3
-
5
-
-
84937090705
-
Smoking and lung cancer: Recent evidence and a discussion of some questions
-
Cornfield J, Haenszel W, Hammond EC, et al. Smoking and lung cancer: Recent evidence and a discussion of some questions. J Natl Cancer Inst. 1959;22:173-203.
-
(1959)
J Natl Cancer Inst
, vol.22
, pp. 173-203
-
-
Cornfield, J.1
Haenszel, W.2
Hammond, E.C.3
-
6
-
-
0000770002
-
Nonparametric bounds on treatment effects
-
Manski C. Nonparametric bounds on treatment effects. Am Econ Rev. 1990;80:319-323.
-
(1990)
Am Econ Rev
, vol.80
, pp. 319-323
-
-
Manski, C.1
-
7
-
-
20544453910
-
Bounding causal effects under uncontrolled confounding using counterfactuals
-
MacLehose RF, Kaufman S, Kaufman JS, et al. Bounding causal effects under uncontrolled confounding using counterfactuals. Epidemiology. 2005;16:548-555.
-
(2005)
Epidemiology
, vol.16
, pp. 548-555
-
-
MacLehose, R.F.1
Kaufman, S.2
Kaufman, J.S.3
-
8
-
-
0001679041
-
Assessing sensitivity to an unobserved binary covariate in an observational study with binary outcome
-
Rosenbaum PR, Rubin DB. Assessing sensitivity to an unobserved binary covariate in an observational study with binary outcome. J Roy Stat Soc Ser B. 1983;45:212-218.
-
(1983)
J Roy Stat Soc Ser B
, vol.45
, pp. 212-218
-
-
Rosenbaum, P.R.1
Rubin, D.B.2
-
9
-
-
0031661402
-
Assessing the sensitivity of regression results to unmeasured confounding in observational studies
-
Lin DY, Psaty BM, Kronmal RA. Assessing the sensitivity of regression results to unmeasured confounding in observational studies. Biometrics. 1998;54:948-963.
-
(1998)
Biometrics
, vol.54
, pp. 948-963
-
-
Lin, D.Y.1
Psaty, B.M.2
Kronmal, R.A.3
-
10
-
-
0033302078
-
-
Hernán MA, Robins JM. Letter to the editor of Biometrics. Biometrics. 1999;55:1316-1317.
-
Hernán MA, Robins JM. Letter to the editor of Biometrics. Biometrics. 1999;55:1316-1317.
-
-
-
-
11
-
-
1442326306
-
Sensitivity analyses for unmeasured confounding assuming a average monotonic structural model for repeated measures
-
Brumback BA, Hernán MA, Haneuse SJPA, et al. Sensitivity analyses for unmeasured confounding assuming a average monotonic structural model for repeated measures. Stat Med. 2004;23:749-767.
-
(2004)
Stat Med
, vol.23
, pp. 749-767
-
-
Brumback, B.A.1
Hernán, M.A.2
Haneuse, S.J.P.A.3
-
12
-
-
20144383829
-
Multiple-bias modelling for analysis of observational data
-
Greenland S. Multiple-bias modelling for analysis of observational data. J Roy Stat Soc Ser A. 2005;168:267-306.
-
(2005)
J Roy Stat Soc Ser A
, vol.168
, pp. 267-306
-
-
Greenland, S.1
-
13
-
-
0030470138
-
Basic methods for sensitivity analysis of biases
-
Greenland S. Basic methods for sensitivity analysis of biases. Int J Epidemiol. 1996;25:1107-1116.
-
(1996)
Int J Epidemiol
, vol.25
, pp. 1107-1116
-
-
Greenland, S.1
-
14
-
-
66649119474
-
-
VanderWeele TJ, Robins JM. Signed directed acyclic graphs for causal inference. In: VanderWeele TJ. Contributions to the theory of causal directed acyclic graphs [PhD thesis]. Cambridge, MA: Harvard University; 2006:1:-42.
-
VanderWeele TJ, Robins JM. Signed directed acyclic graphs for causal inference. In: VanderWeele TJ. Contributions to the theory of causal directed acyclic graphs [PhD thesis]. Cambridge, MA: Harvard University; 2006:1:-42.
-
-
-
-
17
-
-
77951622706
-
The central role of the propensity score in observational studies for causal effects
-
Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika. 1983;70:41-55.
-
(1983)
Biometrika
, vol.70
, pp. 41-55
-
-
Rosenbaum, P.R.1
Rubin, D.B.2
-
18
-
-
46149139403
-
A new approach to causal inference in mortality studies with sustained exposure period - application to control of the healthy worker survivor effect
-
Robins JM. A new approach to causal inference in mortality studies with sustained exposure period - application to control of the healthy worker survivor effect. Math Modelling. 1986;7:1393-1512.
-
(1986)
Math Modelling
, vol.7
, pp. 1393-1512
-
-
Robins, J.M.1
-
19
-
-
0023592958
-
Addendum to a new approach to causal inference in mortality studies with sustained exposure period - application to control of the healthy worker survivor effect
-
Robins JM. Addendum to a new approach to causal inference in mortality studies with sustained exposure period - application to control of the healthy worker survivor effect. Comput Math Appl. 1987;14: 923-945.
-
(1987)
Comput Math Appl
, vol.14
, pp. 923-945
-
-
Robins, J.M.1
-
20
-
-
85153298242
-
-
VanderWeele TJ. The sign of the bias of unmeasured confounding. Biometrics. January 4, 2008 [Epub ahead of print].
-
VanderWeele TJ. The sign of the bias of unmeasured confounding. Biometrics. January 4, 2008 [Epub ahead of print].
-
-
-
-
21
-
-
0038334174
-
Quantifying biases in causal models: Classical confounding vs collider-stratification bias
-
Greenland S. Quantifying biases in causal models: classical confounding vs collider-stratification bias. Epidemiology. 2003;14:300-306.
-
(2003)
Epidemiology
, vol.14
, pp. 300-306
-
-
Greenland, S.1
|