메뉴 건너뛰기




Volumn , Issue , 2006, Pages 406-413

A model-free greedy gene selection for microarray sample class prediction

Author keywords

Discriminatory gene; Gene selection; Greedy; Microarray data analysis; Sample class prediction

Indexed keywords

ARTIFICIAL INTELLIGENCE; BIOCOMMUNICATIONS; BIOINFORMATICS; CLASSIFICATION (OF INFORMATION); CLASSIFIERS; DATA REDUCTION; GENE EXPRESSION; GENES; INFORMATION SCIENCE; INTELLIGENT CONTROL; LEARNING SYSTEMS; LIGHT MEASUREMENT; STATISTICAL METHODS; SUPPORT VECTOR MACHINES;

EID: 50249161876     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CIBCB.2006.330965     Document Type: Conference Paper
Times cited : (4)

References (13)
  • 1
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • S. Dudoit, J. Fridlyand, and T. P. Speed. Comparison of discrimination methods for the classification of tumors using gene expression data. Journal of the American Statistical Association, 97:77-87, 2002.
    • (2002) Journal of the American Statistical Association , vol.97 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.P.3
  • 3
    • 0142102589 scopus 로고    scopus 로고
    • New gene selection for classification of cancer subtype considering within-class variation
    • J. Cho, D. Lee, J. H. Park, and I. B. Lee. New gene selection for classification of cancer subtype considering within-class variation. FEBS Letters, 551:3-7, 2003.
    • (2003) FEBS Letters , vol.551 , pp. 3-7
    • Cho, J.1    Lee, D.2    Park, J.H.3    Lee, I.B.4
  • 4
    • 33746677949 scopus 로고    scopus 로고
    • A stable gene selection in microarray data analysis
    • K. Yang, Z. Cai, J. Li, and G.-H. Lin. A stable gene selection in microarray data analysis. BMC Bioinformatics, 7:228, 2006.
    • (2006) BMC Bioinformatics , vol.7 , pp. 228
    • Yang, K.1    Cai, Z.2    Li, J.3    Lin, G.-H.4
  • 5
    • 17044405923 scopus 로고    scopus 로고
    • Toward integrating feature selection algorithms for classification and clustering
    • H. Liu and L. Yu. Toward integrating feature selection algorithms for classification and clustering. IEEE Transactions on Knowledge and Data Engineering, 17:491-502, 2005.
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , pp. 491-502
    • Liu, H.1    Yu, L.2
  • 6
    • 0034948896 scopus 로고    scopus 로고
    • A Bayesian framework for the analysis of microarray expression data: Regularized t-test and statistical inferences of gene changes
    • P. Baldi and A. D. Long. A Bayesian framework for the analysis of microarray expression data: Regularized t-test and statistical inferences of gene changes. Bioinformatics, 17:509-519, 2001.
    • (2001) Bioinformatics , vol.17 , pp. 509-519
    • Baldi, P.1    Long, A.D.2
  • 7
    • 0036856209 scopus 로고    scopus 로고
    • Nonparametric methods for identifying differentially expressed genes in microarray data
    • O. G. Troyanskaya, M. E. Garber, P. O. Brown, D. Botstein, and R. B. Altman. Nonparametric methods for identifying differentially expressed genes in microarray data. Bioinformatics, 18:1454-1461, 2002.
    • (2002) Bioinformatics , vol.18 , pp. 1454-1461
    • Troyanskaya, O.G.1    Garber, M.E.2    Brown, P.O.3    Botstein, D.4    Altman, R.B.5
  • 8
    • 0035184851 scopus 로고    scopus 로고
    • Biomarker identification by feature wrappers
    • M. Xiong, X. Fang, and J. Zhao. Biomarker identification by feature wrappers. Genome Research, 11:1878-1887, 2001.
    • (2001) Genome Research , vol.11 , pp. 1878-1887
    • Xiong, M.1    Fang, X.2    Zhao, J.3
  • 9
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using support vector machines. Machine Learning, 46:389-422, 2002.
    • (2002) Machine Learning , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.