-
1
-
-
0033075242
-
Fuzzy-model-based parity equations for fault isolation
-
P. Balle, Fuzzy-model-based parity equations for fault isolation, Control Eng. Pract., 7:261-270, 1999.
-
(1999)
Control Eng. Pract
, vol.7
, pp. 261-270
-
-
Balle, P.1
-
2
-
-
23944522281
-
Identification of reaction networks for bioprocesses : Determination of a partially unknown pseudo-stoichiometric matrix
-
O. Bernard and G. Bastin. Identification of reaction networks for bioprocesses : determination of a partially unknown pseudo-stoichiometric matrix. Bioprocess and Biosystems Engineering, 27:293-301, 2005.
-
(2005)
Bioprocess and Biosystems Engineering
, vol.27
, pp. 293-301
-
-
Bernard, O.1
Bastin, G.2
-
3
-
-
0036968220
-
Fuzzy modeling and control of biological processes
-
J-I. Horiuchi. Fuzzy modeling and control of biological processes. J. of Bioscience and Bioengineering, 94:574--578, 2002.
-
(2002)
J. of Bioscience and Bioengineering
, vol.94
, pp. 574-578
-
-
Horiuchi, J.-I.1
-
4
-
-
29744460422
-
-
T. A. Johansen and A. B. Foss. Nonlinear local model representation for adaptive systems. 2, pages 677-682, Proc. of IEEE Int. Conf. on Intelligent Control and Instrumentation, 1992.
-
T. A. Johansen and A. B. Foss. Nonlinear local model representation for adaptive systems. volume 2, pages 677-682, Proc. of IEEE Int. Conf. on Intelligent Control and Instrumentation, 1992.
-
-
-
-
5
-
-
0035710812
-
-
J. Ragot K. G. Gasso, G. Mourot. Structure identification in multiple model representation: elimination and merging of local models, pages 2992-2997. 40th Conference on Decision and Control, CDC'01, December 2001, Orlando, FL, USA.
-
J. Ragot K. G. Gasso, G. Mourot. Structure identification in multiple model representation: elimination and merging of local models, pages 2992-2997. 40th Conference on Decision and Control, CDC'01, December 2001, Orlando, FL, USA.
-
-
-
-
6
-
-
0029358133
-
Modelling and control of carbon monoxide concentration using a neuro-fuzzy technique
-
M. Sano K. Tanaka and H. Watanabe. Modelling and control of carbon monoxide concentration using a neuro-fuzzy technique. IEEE Transactions on Fuzzy Systems, 3:271-279, 1995.
-
(1995)
IEEE Transactions on Fuzzy Systems
, vol.3
, pp. 271-279
-
-
Sano, M.1
Tanaka, K.2
Watanabe, H.3
-
7
-
-
0034476598
-
A comparative study on sufficient conditions for takagi sugeno fuzzy systems as universal approximators
-
W. Xu K. Zeng, N. Zhang. A comparative study on sufficient conditions for takagi sugeno fuzzy systems as universal approximators. IEEE Transactions on Fuzzy System, 8:773-780, 2000.
-
(2000)
IEEE Transactions on Fuzzy System
, vol.8
, pp. 773-780
-
-
Xu, W.1
Zeng, K.2
Zhang, N.3
-
8
-
-
15044352023
-
-
D. Flynn L. Ren, G, W. Irwin. Nonlinear identification and control of a turbogenerator - an on-line scheduled multiple model/controller approach. IEEE Transactions on Energy Conversion, 20:237-245, 2005.
-
D. Flynn L. Ren, G, W. Irwin. Nonlinear identification and control of a turbogenerator - an on-line scheduled multiple model/controller approach. IEEE Transactions on Energy Conversion, 20:237-245, 2005.
-
-
-
-
11
-
-
0034205619
-
On the interpretation and identification of dynamic takagi sugeno fuzzy models
-
June
-
R. Murray. Smith T. Johansen, R. Shorten. On the interpretation and identification of dynamic takagi sugeno fuzzy models. IEEE Transactions on Fuzzy Systems, 8(3):297-313, June 2000.
-
(2000)
IEEE Transactions on Fuzzy Systems
, vol.8
, Issue.3
, pp. 297-313
-
-
Murray, R.1
Smith, T.2
Johansen3
Shorten, R.4
-
12
-
-
23944518070
-
Fuzzy model identification of a biological process based on input-output data clustering
-
May, Copenhagen, Denmark
-
G. Roux V. H. Grisales, A. Gauthier. Fuzzy model identification of a biological process based on input-output data clustering, pages 927 -932, The 14th IEEE International Conference on Fuzzy Systems, May 2005. Copenhagen, Denmark.
-
(2005)
The 14th IEEE International Conference on Fuzzy Systems
, pp. 927-932
-
-
Roux, G.1
Grisales, V.H.2
Gauthier, A.3
-
13
-
-
0032204211
-
General siso takagi sugeno fuzzy systems with linear rule consequent are universal approximators
-
H. Ying. General siso takagi sugeno fuzzy systems with linear rule consequent are universal approximators. IEEE Transactions on Fuzzy Systems, 6:582-587, 1998.
-
(1998)
IEEE Transactions on Fuzzy Systems
, vol.6
, pp. 582-587
-
-
Ying, H.1
|