-
1
-
-
33748438382
-
A multiscale finite element method for numerical homogenization
-
G. ALLAIRE and R. BRIZZI, A multiscale finite element method for numerical homogenization, Multiscale Model. Simul., 4 (2005), pp. 790-812.
-
(2005)
Multiscale Model. Simul
, vol.4
, pp. 790-812
-
-
ALLAIRE, G.1
BRIZZI, R.2
-
2
-
-
18444389215
-
Analysis of a two-scale, locally conservative subgrid upscaling for elliptic problems
-
T. ARBOGAST, Analysis of a two-scale, locally conservative subgrid upscaling for elliptic problems, SIAM J. Numer. Anal., 42 (2004), pp. 576-598.
-
(2004)
SIAM J. Numer. Anal
, vol.42
, pp. 576-598
-
-
ARBOGAST, T.1
-
3
-
-
13844314882
-
Solving elliptic boundary value problems with uncertain coefficients by the finite element method: The stochastic formulation
-
I. BABUŠKA, R. TEMPONE, and G. E. ZOURARIS, Solving elliptic boundary value problems with uncertain coefficients by the finite element method: The stochastic formulation, Comput. Methods Appl. Mech. Engrg., 194 (2005), pp. 1251-1294.
-
(2005)
Comput. Methods Appl. Mech. Engrg
, vol.194
, pp. 1251-1294
-
-
BABUŠKA, I.1
TEMPONE, R.2
ZOURARIS, G.E.3
-
4
-
-
55149093456
-
-
G. BAL, Central Limits and Homogenization in Random Media, http://arxiv.org/abs/0710. 0363 (2007).
-
G. BAL, Central Limits and Homogenization in Random Media, http://arxiv.org/abs/0710. 0363 (2007).
-
-
-
-
5
-
-
35248880150
-
Homogenization in random media and effective medium theory for high frequency waves
-
G. BAL, Homogenization in random media and effective medium theory for high frequency waves, Discrete Contin. Dyn. Syst. Ser. B, 8 (2007), pp. 473-492.
-
(2007)
Discrete Contin. Dyn. Syst. Ser. B
, vol.8
, pp. 473-492
-
-
BAL, G.1
-
6
-
-
85056020726
-
Random integrals and correctors in homogenization
-
to appear
-
G. BAL, J. GARNIER, S. MOTSCH, and V. PERRIER, Random integrals and correctors in homogenization, Asymptot. Anal., to appear.
-
Asymptot. Anal
-
-
BAL, G.1
GARNIER, J.2
MOTSCH, S.3
PERRIER, V.4
-
8
-
-
84990275454
-
Boundary layers and homogenization of transport processes
-
A. BENSOUSSAN, J.-L. LIONS, and G. C. PAPANICOLAOU, Boundary layers and homogenization of transport processes, Publ. Res. Inst. Math. Sci., 15 (1979), pp. 53-157.
-
(1979)
Publ. Res. Inst. Math. Sci
, vol.15
, pp. 53-157
-
-
BENSOUSSAN, A.1
LIONS, J.-L.2
PAPANICOLAOU, G.C.3
-
10
-
-
0017972055
-
Stability and control of stochastic systems with wide-band noise disturbances
-
G. BLANKENSHIP and G. C. PAPANICOLAOU, Stability and control of stochastic systems with wide-band noise disturbances. I, SIAM J. Appl. Math., 34 (1978), pp. 437-476.
-
(1978)
I, SIAM J. Appl. Math
, vol.34
, pp. 437-476
-
-
BLANKENSHIP, G.1
PAPANICOLAOU, G.C.2
-
11
-
-
0000963886
-
On the central limit theorem for stationary mixing random fields
-
E. BOLTHAUSEN, On the central limit theorem for stationary mixing random fields, Ann. Probab., 10 (1982), pp. 1047-1050.
-
(1982)
Ann. Probab
, vol.10
, pp. 1047-1050
-
-
BOLTHAUSEN, E.1
-
12
-
-
84942225190
-
Stochastic two-scale convergence in the mean and applications
-
A. BOURGEAT, A. MIKELIĆ, and S. WRIGHT, Stochastic two-scale convergence in the mean and applications, J. Reine Angew. Math., 456 (1994), pp. 19-51.
-
(1994)
J. Reine Angew. Math
, vol.456
, pp. 19-51
-
-
BOURGEAT, A.1
MIKELIĆ, A.2
WRIGHT, S.3
-
13
-
-
0012407408
-
Estimates in probability of the residual between the random and the homogenized solutions of one-dimensional second-order operator
-
A. BOURGEAT and A. PIATNITSKI, Estimates in probability of the residual between the random and the homogenized solutions of one-dimensional second-order operator, Asymptot. Anal., 21 (1999), pp. 303-315.
-
(1999)
Asymptot. Anal
, vol.21
, pp. 303-315
-
-
BOURGEAT, A.1
PIATNITSKI, A.2
-
14
-
-
1542714643
-
Approximations of effective coefficients in stochastic homogenization
-
A. BOURGEAT and A. PIATNITSKI, Approximations of effective coefficients in stochastic homogenization, Ann. Inst. H. Poincaré Probab. Statist., 40 (2004), pp. 153-165.
-
(2004)
Ann. Inst. H. Poincaré Probab. Statist
, vol.40
, pp. 153-165
-
-
BOURGEAT, A.1
PIATNITSKI, A.2
-
15
-
-
0000909314
-
On the spectral density and asymptotic normality of weakly dependent random fields
-
R. C. BRADLEY, On the spectral density and asymptotic normality of weakly dependent random fields, J. Theoret. Probab., 5 (1992), pp. 355-373.
-
(1992)
J. Theoret. Probab
, vol.5
, pp. 355-373
-
-
BRADLEY, R.C.1
-
16
-
-
0004256573
-
-
Classics Appl. Math. 7, SIAM, Philadelphia
-
L. BREIMAN, Probability, Classics Appl. Math. 7, SIAM, Philadelphia, 1992.
-
(1992)
Probability
-
-
BREIMAN, L.1
-
17
-
-
13844316338
-
Homogenization of fully nonlinear, uniformly elliptic and parabolic partial differential equations in stationary ergodic media
-
L. A. CAFFARELLI, P. E. SOUGANIDIS, and L. WANG, Homogenization of fully nonlinear, uniformly elliptic and parabolic partial differential equations in stationary ergodic media, Comm. Pure Appl. Math., 58 (2005), pp. 319-361.
-
(2005)
Comm. Pure Appl. Math
, vol.58
, pp. 319-361
-
-
CAFFARELLI, L.A.1
SOUGANIDIS, P.E.2
WANG, L.3
-
18
-
-
0000148817
-
The orthogonal development of nonlinear functionals in series of Fourier-Hermite functionals
-
R. CAMERON and W. MARTIN, The orthogonal development of nonlinear functionals in series of Fourier-Hermite functionals, Ann. of Math. (2), 48 (1947), pp. 385-392.
-
(1947)
Ann. of Math. (2)
, vol.48
, pp. 385-392
-
-
CAMERON, R.1
MARTIN, W.2
-
19
-
-
3042650414
-
On homogenization of elliptic equations with random coefficients
-
J. G. CONLON and A. NADDAF, On homogenization of elliptic equations with random coefficients, Electron. J. Probab., 5 (2000), pp. 9-58.
-
(2000)
Electron. J. Probab
, vol.5
, pp. 9-58
-
-
CONLON, J.G.1
NADDAF, A.2
-
20
-
-
37549021903
-
A finite dimensional approximation of the effective diffusivity for a symmetric random walk in a random environment
-
M. CUDNA and T. KOMOROWSKI, A finite dimensional approximation of the effective diffusivity for a symmetric random walk in a random environment, J. Comput. Appl. Math., 213 (2008), pp. 186-204.
-
(2008)
J. Comput. Appl. Math
, vol.213
, pp. 186-204
-
-
CUDNA, M.1
KOMOROWSKI, T.2
-
21
-
-
13644268174
-
Analysis of the heterogeneous multiscale method for elliptic homogenization problems
-
W. E, P. MING, and P. ZHANG, Analysis of the heterogeneous multiscale method for elliptic homogenization problems, J. Amer. Math. Soc., 18 (2005), pp. 121-156.
-
(2005)
J. Amer. Math. Soc
, vol.18
, pp. 121-156
-
-
MING, W.E.P.1
ZHANG, P.2
-
22
-
-
0000713961
-
Convergence of a nonconforming multiscale finite element method
-
Y. R. EFENDIEV, T. Y. HOU, and X.-H. WU, Convergence of a nonconforming multiscale finite element method, SIAM J. Numer. Anal., 37 (2000), pp. 888-910.
-
(2000)
SIAM J. Numer. Anal
, vol.37
, pp. 888-910
-
-
EFENDIEV, Y.R.1
HOU, T.Y.2
WU, X.-H.3
-
23
-
-
55149084621
-
-
S. N. ETHIER and T. G. KURTZ, Markov Processes. Characterization and Convergence, Wiley Ser. Probab. Math. Statist. Probab. Math. Statist., John Wiley and Sons, New York, 1986. Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
-
S. N. ETHIER and T. G. KURTZ, Markov Processes. Characterization and Convergence, Wiley Ser. Probab. Math. Statist. Probab. Math. Statist., John Wiley and Sons, New York, 1986. Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
-
-
-
-
24
-
-
0020194361
-
Mean field and Gaussian approximation for partial differential equations with random coefficients
-
R. FIGARI, E. ORLANDI, and G. PAPANICOLAOU, Mean field and Gaussian approximation for partial differential equations with random coefficients, SIAM J. Appl. Math., 42 (1982), pp. 1069-1077.
-
(1982)
SIAM J. Appl. Math
, vol.42
, pp. 1069-1077
-
-
FIGARI, R.1
ORLANDI, E.2
PAPANICOLAOU, G.3
-
25
-
-
34548320056
-
-
Springer-Verlag, New York
-
J.-P. FOUQUE, J. GARNIER, G. PAPANICOLAOU, and K. SOLNA, Wave Propagation and Time Reversal in Randomly Layered Media, Springer-Verlag, New York, 2007.
-
(2007)
Wave Propagation and Time Reversal in Randomly Layered Media
-
-
FOUQUE, J.-P.1
GARNIER, J.2
PAPANICOLAOU, G.3
SOLNA, K.4
-
26
-
-
0040737797
-
A limit theorem for linear boundary value problems in randommedia
-
J.-P. FOUQUE and E. MERZBACH, A limit theorem for linear boundary value problems in randommedia, Ann. Appl. Probab., 4 (1994), pp. 549-569.
-
(1994)
Ann. Appl. Probab
, vol.4
, pp. 549-569
-
-
FOUQUE, J.-P.1
MERZBACH, E.2
-
27
-
-
10444261986
-
Finite elements for elliptic problems with stochastic coefficients
-
P. FRAUENFELDER, C. SCHWAB, and R. A. TODOR, Finite elements for elliptic problems with stochastic coefficients, Comput. Methods Appl. Mech. Engrg., 194 (2005), pp. 205-228.
-
(2005)
Comput. Methods Appl. Mech. Engrg
, vol.194
, pp. 205-228
-
-
FRAUENFELDER, P.1
SCHWAB, C.2
TODOR, R.A.3
-
29
-
-
33744543472
-
Wiener chaos expansions and numerical solutions of randomly forced equations of fluid mechanics
-
T. Y. HOU, W. LUO, B. ROZOVSKII, and H.-M. ZHOU, Wiener chaos expansions and numerical solutions of randomly forced equations of fluid mechanics, J. Comput. Phys., 216 (2006), pp. 687-706.
-
(2006)
J. Comput. Phys
, vol.216
, pp. 687-706
-
-
HOU, T.Y.1
LUO, W.2
ROZOVSKII, B.3
ZHOU, H.-M.4
-
30
-
-
0004080182
-
-
Springer-Verlag, New York
-
V. V. JIKOV, S. M. KOZLOV, and O. A. OLEINIK, Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, New York, 1994.
-
(1994)
Homogenization of Differential Operators and Integral Functionals
-
-
JIKOV, V.V.1
KOZLOV, S.M.2
OLEINIK, O.A.3
-
32
-
-
0003649950
-
-
MD
-
R. Z. KHASMINSKII, Stochastic Stability of Differential Equations, Sijthoff & Noordhoff, Alphen aan den Rijn, The Netherlands, Germantown, MD, 1980.
-
(1980)
Stochastic Stability of Differential Equations, Sijthoff & Noordhoff, Alphen aan den Rijn, The Netherlands, Germantown
-
-
KHASMINSKII, R.Z.1
-
34
-
-
0007120846
-
The averaging of random operators
-
S. M. KOZLOV, The averaging of random operators, Mat. Sb. (N.S.), 109 (1979), pp. 188-202.
-
(1979)
Mat. Sb. (N.S.)
, vol.109
, pp. 188-202
-
-
KOZLOV, S.M.1
-
35
-
-
0003861445
-
-
MIT Press, Cambridge, MA
-
H. J. KUSHNER, Approximation and Weak Convergence Method for Random Processes, with Applications to Stochastic Systems Theory, MIT Press, Cambridge, MA, 1984.
-
(1984)
Approximation and Weak Convergence Method for Random Processes, with Applications to Stochastic Systems Theory
-
-
KUSHNER, H.J.1
-
36
-
-
0035616897
-
Homogenization of divergence-form operators with lower-order terms in random media
-
A. LEJAY, Homogenization of divergence-form operators with lower-order terms in random media, Probab. Theory Related Fields, 120 (2001), pp. 255-276.
-
(2001)
Probab. Theory Related Fields
, vol.120
, pp. 255-276
-
-
LEJAY, A.1
-
37
-
-
17444412675
-
Homogenization of "viscous" Hamilton-Jacobi equations in stationary ergodic media
-
P.-L. LIONS and P. E. SOUGANIDIS, Homogenization of "viscous" Hamilton-Jacobi equations in stationary ergodic media, Comm. Partial Differential Equations, 30 (2005), pp. 335-375.
-
(2005)
Comm. Partial Differential Equations
, vol.30
, pp. 335-375
-
-
LIONS, P.-L.1
SOUGANIDIS, P.E.2
-
38
-
-
13844308726
-
Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations
-
H. G. MATTHIES and A. KEESE, Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations, Comput. Methods Appl. Mech. Engrg., 194 (2005), pp. 1295-1331.
-
(2005)
Comput. Methods Appl. Mech. Engrg
, vol.194
, pp. 1295-1331
-
-
MATTHIES, H.G.1
KEESE, A.2
-
39
-
-
0004025336
-
-
Cambridge Monogr. Appl. Comput. Math. 6, Cambridge University Press, Cambridge, UK
-
G. W. MILTON, The Theory of Composites, Cambridge Monogr. Appl. Comput. Math. 6, Cambridge University Press, Cambridge, UK, 2002.
-
(2002)
The Theory of Composites
-
-
MILTON, G.W.1
-
40
-
-
55149085725
-
Homogenization of parabolic equations with a continuum of space and time scales
-
H. OWHADI and L. ZHANG, Homogenization of parabolic equations with a continuum of space and time scales, SIAM J. Numer. Anal., 46 (2007), pp. 1-36.
-
(2007)
SIAM J. Numer. Anal
, vol.46
, pp. 1-36
-
-
OWHADI, H.1
ZHANG, L.2
-
41
-
-
0010398784
-
Martingale approach to some limit theorems
-
Duke University Press, Durham, NC
-
G. PAPANICOLAOU, D. STROOCK, and S. R. VARADHAN, Martingale approach to some limit theorems, in Statistical Mechanics and Dynamical Systems, Duke University Press, Durham, NC, 1977, pp. 1-120.
-
(1977)
Statistical Mechanics and Dynamical Systems
, pp. 1-120
-
-
PAPANICOLAOU, G.1
STROOCK, D.2
VARADHAN, S.R.3
-
42
-
-
55149126072
-
-
G. C. PAPANICOLAOU and S. R. S. VARADHAN, Boundary value problems with rapidly oscillating random coefficients, in Random Fields, Vols. I, II (Esztergom, 1979), Colloq. Math. Soc. János Bolyai 27, North-Holland, Amsterdam, New York, 1981, pp. 835-873.
-
G. C. PAPANICOLAOU and S. R. S. VARADHAN, Boundary value problems with rapidly oscillating random coefficients, in Random Fields, Vols. I, II (Esztergom, 1979), Colloq. Math. Soc. János Bolyai 27, North-Holland, Amsterdam, New York, 1981, pp. 835-873.
-
-
-
-
43
-
-
55149104644
-
Homogenization of a singular random one dimensional PDE, in Multi Scale Problems and Asymptotic Analysis
-
GAKUTO Internat, Gakkōtosho, Tokyo
-
E. PARDOUX and A. PIATNITSKI, Homogenization of a singular random one dimensional PDE, in Multi Scale Problems and Asymptotic Analysis, GAKUTO Internat. Ser. Math. Sci. Appl. 24, Gakkōtosho, Tokyo, 2006, pp. 291-303.
-
(2006)
Ser. Math. Sci. Appl
, vol.24
, pp. 291-303
-
-
PARDOUX, E.1
PIATNITSKI, A.2
-
45
-
-
84980134275
-
A limit theorem for stochastic two-point boundary value problems of ordinary differential equations
-
B. WHITE and J. FRANKLIN, A limit theorem for stochastic two-point boundary value problems of ordinary differential equations, Comm. Pure Appl. Math., 32 (1979), pp. 253-276.
-
(1979)
Comm. Pure Appl. Math
, vol.32
, pp. 253-276
-
-
WHITE, B.1
FRANKLIN, J.2
-
46
-
-
0000786435
-
The homogeneous chaos
-
N. WIENER, The homogeneous chaos, Amer. J. Math., 60 (1938), pp. 897-936.
-
(1938)
Amer. J. Math
, vol.60
, pp. 897-936
-
-
WIENER, N.1
-
47
-
-
55149108820
-
-
V. V. YURINSKII, Averaging of symmetric diffusion in a random medium, Sibirsk. Mat. Zh., 27 (1986), pp. 167-180 (in Russian); Siberian Math. J., 4 (1986), pp. 603-613 (in English).
-
V. V. YURINSKII, Averaging of symmetric diffusion in a random medium, Sibirsk. Mat. Zh., 27 (1986), pp. 167-180 (in Russian); Siberian Math. J., 4 (1986), pp. 603-613 (in English).
-
-
-
-
48
-
-
1442307688
-
An efficient, high-order perturbation approach for flow in random porous media via Karhunen-Loéve and polynomial eXPANSION
-
D. ZHANG and Z. LU, An efficient, high-order perturbation approach for flow in random porous media via Karhunen-Loéve and polynomial eXPANSION, J. Comput. Phys., 194 (2004), pp. 773-794.
-
(2004)
J. Comput. Phys
, vol.194
, pp. 773-794
-
-
ZHANG, D.1
LU, Z.2
|