-
1
-
-
84990602687
-
Compactness methods in the theory of homogenization
-
M. AVELLANEDA AND F.-H. LIN, Compactness methods in the theory of homogenization, Comm. Pure Appl. Math., 40 (1989), pp. 803-843.
-
(1989)
Comm. Pure Appl. Math.
, vol.40
, pp. 803-843
-
-
Avellaneda, M.1
Lin, F.-H.2
-
2
-
-
0028483749
-
Special finite element methods for a class of second order elliptic problems with rough coefficients
-
I. BABUŠKA, G. CALOZ, AND E. OSBORN, Special finite element methods for a class of second order elliptic problems with rough coefficients, SIAM J. Numer. Anal., 31 (1994), pp. 945-981.
-
(1994)
SIAM J. Numer. Anal.
, vol.31
, pp. 945-981
-
-
Babuška, I.1
Caloz, G.2
Osborn, E.3
-
3
-
-
0003529370
-
Asymptotic Analysis for Periodic Structure
-
North-Holland, Amsterdam
-
A. BENSOUSSAN, J. L. LIONS, AND G. PAPANICOLAOU, Asymptotic Analysis for Periodic Structure, Stud. Math. Appl. 5, North-Holland, Amsterdam, 1978.
-
(1978)
Stud. Math. Appl.
, vol.5
-
-
Bensoussan, A.1
Lions, J.L.2
Papanicolaou, G.3
-
4
-
-
0009159076
-
Boundary layer analysis in homogenization of diffusion equations with Dirichlet conditions in the half space
-
K. Ito, ed., John Wiley, New York, Chichester, Brisbane
-
A. BENSOUSSAN, J. L. LIONS, AND G. PAPANICOLAOU, Boundary layer analysis in homogenization of diffusion equations with Dirichlet conditions in the half space, in Proceedings of the International Symposium on Stochastic Differential Equations, K. Ito, ed., John Wiley, New York, Chichester, Brisbane, 1978, pp. 21-40.
-
(1978)
Proceedings of the International Symposium on Stochastic Differential Equations
, pp. 21-40
-
-
Bensoussan, A.1
Lions, J.L.2
Papanicolaou, G.3
-
5
-
-
0031163368
-
b is equal to integral of g
-
F. BREZZI, L. FRANCA, T. HUGHES, AND A. RUSSO, b is equal to integral of g, Comput. Methods Appl. Mech. Engrg., 145 (1997), pp. 329-339.
-
(1997)
Comput. Methods Appl. Mech. Engrg.
, vol.145
, pp. 329-339
-
-
Brezzi, F.1
Franca, L.2
Hughes, T.3
Russo, A.4
-
7
-
-
0004070971
-
-
Ph.D. thesis, Applied Mathematics, Caltech, Pasadena, CA
-
Y. R. EFENDIEV, The Multiscale Finite Element Method (MsFEM) and Its Applications, Ph.D. thesis, Applied Mathematics, Caltech, Pasadena, CA, 1999.
-
(1999)
The Multiscale Finite Element Method (MsFEM) and Its Applications
-
-
Efendiev, Y.R.1
-
8
-
-
0031161210
-
A multiscale finite element method for elliptic problems in composite materials and porous media
-
T. Y. HOU AND X. H. WU, A multiscale finite element method for elliptic problems in composite materials and porous media, J. Comput. Phys., 134 (1997), pp. 169-189.
-
(1997)
J. Comput. Phys.
, vol.134
, pp. 169-189
-
-
Hou, T.Y.1
Wu, X.H.2
-
9
-
-
0013004246
-
A multiscale finite element method for PDEs with oscillatory coefficients
-
Numerical Treatment of Multi-Scale Problems, Vieweg-Verlag, Wiesbaden
-
T. Y. HOU AND X. H. WU, A multiscale finite element method for PDEs with oscillatory coefficients, in Numerical Treatment of Multi-Scale Problems, Notes Numer. Fluid Mech. 70, Vieweg-Verlag, Wiesbaden, 1999, pp. 58-69.
-
(1999)
Notes Numer. Fluid Mech.
, vol.70
, pp. 58-69
-
-
Hou, T.Y.1
Wu, X.H.2
-
10
-
-
0039982148
-
Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients
-
T. Y. HOU, X. H. WU, AND Z. CAI Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients, Math. Comp., 68 (1999), pp. 913-943.
-
(1999)
Math. Comp.
, vol.68
, pp. 913-943
-
-
Hou, T.Y.1
Wu, X.H.2
Cai, Z.3
-
11
-
-
0032203197
-
The variational multiscale method: A paradigm for computational mechanics
-
T. HUGHES, G. FEIJOO, L. MAZZEI, AND J. QUINCY, The variational multiscale method: A paradigm for computational mechanics, Comput. Methods Appl. Mech. Engrg., 166 (1998), pp. 3-24.
-
(1998)
Comput. Methods Appl. Mech. Engrg.
, vol.166
, pp. 3-24
-
-
Hughes, T.1
Feijoo, G.2
Mazzei, L.3
Quincy, J.4
-
12
-
-
0004080182
-
-
Springer-Verlag, Berlin
-
V. V. JIKOV, S. M. KOZLOV, AND O. A. OLEINIK, Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, Berlin, 1994.
-
(1994)
Homogenization of Differential Operators and Integral Functionals
-
-
Jikov, V.V.1
Kozlov, S.M.2
Oleinik, O.A.3
-
14
-
-
84990619714
-
Nodal sets of solutions of elliptic and parabolic equations
-
F.-H. LIN, Nodal sets of solutions of elliptic and parabolic equations, Comm. Pure Appl. Math., 44 (1991), pp. 287-308.
-
(1991)
Comm. Pure Appl. Math.
, vol.44
, pp. 287-308
-
-
Lin, F.-H.1
-
15
-
-
33747491187
-
First order corrections to the homogenized eigenvalues of a periodic composite medium. a convergence proof
-
S. MOSKOW AND M. VOGELIUS, First order corrections to the homogenized eigenvalues of a periodic composite medium. A convergence proof, Proc. Roy. Soc. Edinburgh Sect. A, 127A (1997), pp. 1263-1299.
-
(1997)
Proc. Roy. Soc. Edinburgh Sect. A
, vol.127 A
, pp. 1263-1299
-
-
Moskow, S.1
Vogelius, M.2
-
16
-
-
84966240353
-
A globally uniformly convergent finite element method for a singularly perturbed elliptic problem in 2 dimensions
-
E. ORIORDAN AND M. STYNES, A globally uniformly convergent finite element method for a singularly perturbed elliptic problem in 2 dimensions, Math. Comp., 57 (1991), pp. 47-62.
-
(1991)
Math. Comp.
, vol.57
, pp. 47-62
-
-
Oriordan, E.1
Stynes, M.2
-
17
-
-
0027874593
-
First-order corrections to the homogenized eigenvalues of a periodic composite medium
-
F. SANTOSA AND M. VOGELIUS, First-order corrections to the homogenized eigenvalues of a periodic composite medium, SIAM J. Appl. Math., 53 (1993), pp. 1636-1668.
-
(1993)
SIAM J. Appl. Math.
, vol.53
, pp. 1636-1668
-
-
Santosa, F.1
Vogelius, M.2
-
19
-
-
85190568649
-
Convergence of a Petrov-Galerkin nonconforming multiscale finite element method
-
to appear
-
Y. ZHANG, T. Y. HOU, AND X. H. WU, Convergence of a Petrov-Galerkin nonconforming multiscale finite element method, SIAM J. Numer. Anal., to appear.
-
SIAM J. Numer. Anal.
-
-
Zhang, Y.1
Hou, T.Y.2
Wu, X.H.3
|