메뉴 건너뛰기




Volumn , Issue , 2006, Pages

An adaptive situation assessment based decision making system

Author keywords

Battlespace modeling; Bayesian networks; Situation assessment

Indexed keywords

BAYESIAN NETWORKS; DATA FUSION; DISTRIBUTED PARAMETER NETWORKS; DYNAMICS; FUSION REACTIONS; INFERENCE ENGINES; INFORMATION FUSION; INTELLIGENT NETWORKS; NUCLEAR PHYSICS; PROBLEM SOLVING; SENSOR DATA FUSION; SPEECH ANALYSIS;

EID: 50149091104     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICIF.2006.301583     Document Type: Conference Paper
Times cited : (4)

References (10)
  • 3
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the em algorithm
    • A. Dempster, N. Laird, and D. Rubi, "Maximum likelihood from incomplete data via the em algorithm," Journal of the Royal Statistical Society, vol. 39(B), pp. 1-38, 1977.
    • (1977) Journal of the Royal Statistical Society , vol.39 , Issue.B , pp. 1-38
    • Dempster, A.1    Laird, N.2    Rubi, D.3
  • 4
    • 0001586968 scopus 로고    scopus 로고
    • Learning bayesian networks in the presence of missing values and hidden variables
    • Nashville, TN, July
    • N. Friedman, "Learning bayesian networks in the presence of missing values and hidden variables," in Proc. Fourteenth International Conference on Machine Learning (ICML), Nashville, TN, July 1997, pp. 125-133.
    • (1997) Proc. Fourteenth International Conference on Machine Learning (ICML) , pp. 125-133
    • Friedman, N.1
  • 5
    • 0031272327 scopus 로고    scopus 로고
    • Efficient approximations for the marginal likelihood of bayesian networks with hidden variables
    • D. M. Chickering and D. Heckerman, "Efficient approximations for the marginal likelihood of bayesian networks with hidden variables," Machine Learning, vol. 29, no. 2-3, pp. 181-212, 1997.
    • (1997) Machine Learning , vol.29 , Issue.2-3 , pp. 181-212
    • Chickering, D.M.1    Heckerman, D.2
  • 6
    • 58149210716 scopus 로고
    • The em-algorithm for graphical association models with missing data
    • S. L. Lauritzen, "The em-algorithm for graphical association models with missing data," Computational Statistics and Data Analysis, vol. 1, pp. 191-201, 1995.
    • (1995) Computational Statistics and Data Analysis , vol.1 , pp. 191-201
    • Lauritzen, S.L.1
  • 8
    • 0028482006 scopus 로고
    • Learning bayesian belief networks: An approach based on the mdl principle
    • W. Lam and F. Bacchus, "Learning bayesian belief networks: An approach based on the mdl principle," Computational Intelligence, vol. 10, pp. 269-293, 1994.
    • (1994) Computational Intelligence , vol.10 , pp. 269-293
    • Lam, W.1    Bacchus, F.2
  • 9
    • 50149099778 scopus 로고    scopus 로고
    • C. M. Kreucher, D. Blatt, A. O. H. III, and K. Kastella, Adaptive multimodality sensor scheduling for detection and tracking of smart targets, in Proc. 2004 Defense Applications of Signal Processing (DASP) Workshop, Nov. 2004.
    • C. M. Kreucher, D. Blatt, A. O. H. III, and K. Kastella, "Adaptive multimodality sensor scheduling for detection and tracking of smart targets," in Proc. 2004 Defense Applications of Signal Processing (DASP) Workshop, Nov. 2004.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.