메뉴 건너뛰기




Volumn , Issue , 2008, Pages 913-914

Intelligent diabetes assistant: Using machine learning to help manage diabetes

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; BLOOD; COMPUTER APPLICATIONS; COMPUTER SYSTEMS; DATA STORAGE EQUIPMENT; GLUCOSE; LEARNING SYSTEMS; ROBOT LEARNING; STATISTICAL METHODS; TELEMEDICINE;

EID: 50049126408     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/AICCSA.2008.4493641     Document Type: Conference Paper
Times cited : (12)

References (4)
  • 1
    • 0242284429 scopus 로고    scopus 로고
    • B. Allgot, D. Gan, and H. K. et al, editors, International Diabetes Federation
    • B. Allgot, D. Gan, and H. K. et al., editors. Diabetes Atlas. International Diabetes Federation, 2003.
    • (2003) Diabetes Atlas
  • 2
    • 50049135095 scopus 로고    scopus 로고
    • A. D. Association. Standards of medical care in diabetes. Diabetes Care, 2007.
    • A. D. Association. Standards of medical care in diabetes. Diabetes Care, 2007.
  • 3
    • 0027370108 scopus 로고    scopus 로고
    • T. D. Control and complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993.
    • T. D. Control and complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993.
  • 4
    • 0043170762 scopus 로고    scopus 로고
    • A comparison of diabetes education administered through telemedicine versus in person
    • R. E. Izquierdo. A comparison of diabetes education administered through telemedicine versus in person. Diabetes Care, 2003.
    • (2003) Diabetes Care
    • Izquierdo, R.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.