메뉴 건너뛰기




Volumn , Issue , 2006, Pages 64-71

Active Annotation

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL LINGUISTICS; LEARNING ALGORITHMS; NATURAL LANGUAGE PROCESSING SYSTEMS; REUSABILITY; SUPERVISED LEARNING; TEXT PROCESSING;

EID: 49749110541     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (24)

References (17)
  • 1
    • 85012866794 scopus 로고    scopus 로고
    • Active learning and the total cost of annotation
    • Barcelona, Spain
    • J. Baldridge and M. Osborne. 2004. Active learning and the total cost of annotation. In Proceedings of EMNLP 2004, Barcelona, Spain.
    • (2004) Proceedings of EMNLP 2004
    • Baldridge, J.1    Osborne, M.2
  • 5
  • 6
    • 85054452952 scopus 로고    scopus 로고
    • Detecting errors in part-of-speech annotation
    • andW Budapest, Hungary
    • M. Dickinson andW. D.Meurers. 2003. Detecting errors in part-of-speech annotation. In Proceedings of EACL 2003, pages 107-114, Budapest, Hungary.
    • (2003) Proceedings of EACL 2003 , pp. 107-114
    • Dickinson, M.1    Meurers, D.2
  • 7
    • 84874731554 scopus 로고    scopus 로고
    • A system for identifying named entities in biomedical text: How results from two evaluations reflect on both the system and the evaluations
    • S. Dingare, J. Finkel, M. Nissim, C. Manning, and C. Grover. 2004. A system for identifying named entities in biomedical text: How results from two evaluations reflect on both the system and the evaluations. In The 2004 BioLink meeting at ISMB.
    • (2004) The 2004 BioLink meeting at ISMB
    • Dingare, S.1    Finkel, J.2    Nissim, M.3    Manning, C.4    Grover, C.5
  • 12
    • 0346986305 scopus 로고    scopus 로고
    • Shallow parsing using noisy and non-stationary training material
    • M. Osborne. 2002. Shallow parsing using noisy and non-stationary training material. J. Mach. Learn. Res., 2:695-719.
    • (2002) J. Mach. Learn. Res , vol.2 , pp. 695-719
    • Osborne, M.1
  • 13
    • 2142727946 scopus 로고    scopus 로고
    • Limitations of co-training for natural language learning from large datasets
    • D. Pierce and C. Cardie. 2001. Limitations of co-training for natural language learning from large datasets. In Proceedings of EMNLP 2001, pages 1-9.
    • (2001) Proceedings of EMNLP 2001 , pp. 1-9
    • Pierce, D.1    Cardie, C.2
  • 16
    • 70350693274 scopus 로고    scopus 로고
    • Multi-criteria-based active learning for named entity recongition
    • Barcelona
    • D. Shen, J. Zhang, J. Su, G. Zhou, and C. L. Tan. 2004. Multi-criteria-based active learning for named entity recongition. In Proceedings of ACL 2004, Barcelona.
    • (2004) Proceedings of ACL 2004
    • Shen, D.1    Zhang, J.2    Su, J.3    Zhou, G.4    Tan, C. L.5
  • 17
    • 84962741071 scopus 로고    scopus 로고
    • Faking errors to avoid making errors: Machine learning for error detection in writing
    • J. Sjöbergh and O. Knutsson. 2005. Faking errors to avoid making errors: Machine learning for error detection in writing. In Proceedings of RANLP 2005
    • (2005) Proceedings of RANLP 2005
    • Sjöbergh, J.1    Knutsson, O.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.