메뉴 건너뛰기




Volumn 6, Issue , 2008, Pages 275-292

Non-negative matrix factorization for the analysis of complex gene expression data: Identification of clinically relevant tumor subtypes

Author keywords

Gene expression; Metagenes; NMF; Tumor classification

Indexed keywords

ARTICLE; CHROMOSOME TRANSLOCATION; FACTORIAL ANALYSIS; GENE EXPRESSION; GENETIC ANALYSIS; MICROARRAY ANALYSIS; TUMOR; ALGORITHM; CENTRAL NERVOUS SYSTEM TUMOR; GENE; GENE CLUSTER; HEAD AND NECK SQUAMOUS CELL CARCINOMA; HUMAN; LEUKEMIA; LUNG CANCER; METAGENE; NONNEGATIVE MATRIX FACTORIZATION; TUMOR CLASSIFICATION;

EID: 49649102048     PISSN: 11769351     EISSN: 11769351     Source Type: Journal    
DOI: 10.4137/cin.s606     Document Type: Article
Times cited : (70)

References (19)
  • 6
    • 49649111536 scopus 로고    scopus 로고
    • Douglas, A., Hosack Glynn Dennis, Jr., Brad, T., Sherman, H. and Clifford Lane and Richard, A. 2003. Lempicki. Identifying biological themes within lists of genes with EASE. Genome. Biology, 4:4.
    • Douglas, A., Hosack Glynn Dennis, Jr., Brad, T., Sherman, H. and Clifford Lane and Richard, A. 2003. Lempicki. Identifying biological themes within lists of genes with EASE. Genome. Biology, 4:4.
  • 7
    • 33748201591 scopus 로고    scopus 로고
    • Independent component analysis reveals new and biologically significant structures in microarray data
    • Frigyesi, A., Veerla, S., Lindgren, D. and Höglund, M. 2006. Independent component analysis reveals new and biologically significant structures in microarray data. BMC Bioinformatics, 7:290.
    • (2006) BMC Bioinformatics , vol.7 , pp. 290
    • Frigyesi, A.1    Veerla, S.2    Lindgren, D.3    Höglund, M.4
  • 8
    • 33845903308 scopus 로고    scopus 로고
    • Inferential, robust non-negative matrix factorization analysis of microarray data
    • Fogel, P., Young, S.S., Hawkins, D.M. and Ledirac, N. 2007. Inferential, robust non-negative matrix factorization analysis of microarray data. Bioinformatics, 23:44-9.
    • (2007) Bioinformatics , vol.23 , pp. 44-49
    • Fogel, P.1    Young, S.S.2    Hawkins, D.M.3    Ledirac, N.4
  • 9
    • 27744601822 scopus 로고    scopus 로고
    • Improving molecular cancer class discovery through sparse non-negative matrix factorization
    • Gao, Y. and Church, G. 2005. Improving molecular cancer class discovery through sparse non-negative matrix factorization. Bioinformatics, 21:3970-5.
    • (2005) Bioinformatics , vol.21 , pp. 3970-3975
    • Gao, Y.1    Church, G.2
  • 11
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative Matrix Factorization with Sparseness Constrains
    • Hoyer, P.O. 2004. Non-negative Matrix Factorization with Sparseness Constrains. J. Machine Learning Research, 5:1457-69.
    • (2004) J. Machine Learning Research , vol.5 , pp. 1457-1469
    • Hoyer, P.O.1
  • 13
    • 34547844077 scopus 로고    scopus 로고
    • Sparse Non-negative Matrix Factorizations via Alternating Non-negativity-constrained Least Squares for Microarray Data Analysis
    • Kim, H. and Park, H. 2007. Sparse Non-negative Matrix Factorizations via Alternating Non-negativity-constrained Least Squares for Microarray Data Analysis. Bioinfroamtics, 23:1495-502.
    • (2007) Bioinfroamtics , vol.23 , pp. 1495-1502
    • Kim, H.1    Park, H.2
  • 14
    • 0037810449 scopus 로고    scopus 로고
    • Subsystem identification through dimensionality reduction of large-scale gene expression data
    • Kim, P.M. and Tidor, B. 2003. Subsystem identification through dimensionality reduction of large-scale gene expression data. Genome Res., 13:1706-18.
    • (2003) Genome Res , vol.13 , pp. 1706-1718
    • Kim, P.M.1    Tidor, B.2
  • 15
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • Lee, D.D. and Seung, S. 1999. Learning the parts of objects by non-negative matrix factorization. Nature, 401:788-91.
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, S.2
  • 19
    • 33646181805 scopus 로고    scopus 로고
    • LS-NMF: A modified non-negative matrix factorization algorithm utilizing uncertainty estimates
    • Wang, G., Kossenkov, A.V. and Ochs, M.F. 2006. LS-NMF: a modified non-negative matrix factorization algorithm utilizing uncertainty estimates. BMC Bioinformatics, 7:175.
    • (2006) BMC Bioinformatics , vol.7 , pp. 175
    • Wang, G.1    Kossenkov, A.V.2    Ochs, M.F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.