메뉴 건너뛰기




Volumn 8, Issue 3, 2008, Pages 455-463

A note on Berestycki-Cazenave's classical instability result for nonlinear Schrödinger equations

Author keywords

Blow up; Instability; Nonlinear Schr dinger equations; Standing waves; Variational methods

Indexed keywords


EID: 49649092422     PISSN: 15361365     EISSN: None     Source Type: Journal    
DOI: 10.1515/ans-2008-0302     Document Type: Article
Times cited : (77)

References (17)
  • 1
    • 0000817006 scopus 로고
    • Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéaires
    • H. BERESTYCKI AND T. CAZENAVE, Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéaires, C. R. Acad. Sci. Paris 293, (1981), 489-492.
    • (1981) C. R. Acad. Sci. Paris , vol.293 , pp. 489-492
    • BERESTYCKI, H.1    CAZENAVE, T.2
  • 3
    • 0000061307 scopus 로고
    • Équations de champs scalaires euclidiens non linéaires dans le plan
    • H. BERESTYCKI, T. GALLOUET AND O. KAVIAN, Équations de champs scalaires euclidiens non linéaires dans le plan, C. R. Acad. Sci. Paris 297, (1983), 307-310.
    • (1983) C. R. Acad. Sci. Paris , vol.297 , pp. 307-310
    • BERESTYCKI, H.1    GALLOUET, T.2    KAVIAN, O.3
  • 6
    • 0000090159 scopus 로고
    • Orbital stability of standing waves for some nonlinear Schrödinger equations
    • T. CAZENAVE AND P.L. LIONS, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys., 85, 4, (1982), 549-561.
    • (1982) Comm. Math. Phys , vol.85 , Issue.4 , pp. 549-561
    • CAZENAVE, T.1    LIONS, P.L.2
  • 8
    • 49249148441 scopus 로고    scopus 로고
    • J. GINIBRE AND G. VELO, On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case, J. Func. Anal. 32, 1, (1979), 1-32.
    • J. GINIBRE AND G. VELO, On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case, J. Func. Anal. 32, 1, (1979), 1-32.
  • 9
    • 77950638323 scopus 로고    scopus 로고
    • Instability for standing waves of nonlinear Klein-Gordon equations via mountain-pass arguments
    • to appear in
    • L. JEANJEAN AND S. LE COZ, Instability for standing waves of nonlinear Klein-Gordon equations via mountain-pass arguments, to appear in Trans. Amer. Math. Soc.
    • Trans. Amer. Math. Soc
    • JEANJEAN, L.1    LE COZ, S.2
  • 10
    • 20144362610 scopus 로고    scopus 로고
    • A note on a mountain pass characterization of least energy solutions
    • L. JEANJEAN AND K. TANAKA, A note on a mountain pass characterization of least energy solutions, Adv. Nonlinear Stud. 3, 4, (2003), 445-455.
    • (2003) Adv. Nonlinear Stud , vol.3 , Issue.4 , pp. 445-455
    • JEANJEAN, L.1    TANAKA, K.2
  • 12
    • 43049140512 scopus 로고    scopus 로고
    • Instability of bound states of a nonlinear Schrödinger equation with a Dirac potential
    • S. LE COZ, R. FUKUIZUMI, G. FIBICH, B. KSHERIM AND Y. SIVAN, Instability of bound states of a nonlinear Schrödinger equation with a Dirac potential, Physica D 237, (2008), 1103-1128.
    • (2008) Physica D , vol.237 , pp. 1103-1128
    • LE COZ, S.1    FUKUIZUMI, R.2    FIBICH, G.3    KSHERIM, B.4    SIVAN, Y.5
  • 13
    • 23044524074 scopus 로고    scopus 로고
    • Blow up and instability of solitary-wave solutions to a generalized Kadomtsev-Petviashvili equation
    • Y. LIU, Blow up and instability of solitary-wave solutions to a generalized Kadomtsev-Petviashvili equation, Trans. Amer. Math. Soc. 353, 1, (2001), 191-208.
    • (2001) Trans. Amer. Math. Soc , vol.353 , Issue.1 , pp. 191-208
    • LIU, Y.1
  • 14
    • 0037139617 scopus 로고    scopus 로고
    • Strong instability of solitary-wave solutions to a Kadomtsev-Petviashvili equation in three dimensions
    • Y. LIU, Strong instability of solitary-wave solutions to a Kadomtsev-Petviashvili equation in three dimensions, J. Differential Equations 180, 1, (2002), 153-170.
    • (2002) J. Differential Equations , vol.180 , Issue.1 , pp. 153-170
    • LIU, Y.1
  • 15
    • 33646708701 scopus 로고    scopus 로고
    • Instability of standing waves of the Schrödinger equation with inhomogeneous nonlinearity
    • Y. LIU, X.-P. WANG AND K. WANG, Instability of standing waves of the Schrödinger equation with inhomogeneous nonlinearity, Trans. Amer. Math. Soc. 358, (2006), 2105-2122.
    • (2006) Trans. Amer. Math. Soc , vol.358 , pp. 2105-2122
    • LIU, Y.1    WANG, X.-P.2    WANG, K.3
  • 16
    • 15744375622 scopus 로고    scopus 로고
    • Strong instability of standing waves for nonlinear Klein-Gordon equations
    • M. OHTA AND G. TODOROVA, Strong instability of standing waves for nonlinear Klein-Gordon equations, Discrete Contin. Dyn. Syst. 12, 2, (2005), 315-322.
    • (2005) Discrete Contin. Dyn. Syst , vol.12 , Issue.2 , pp. 315-322
    • OHTA, M.1    TODOROVA, G.2
  • 17
    • 27944469641 scopus 로고    scopus 로고
    • Sharp threshold for blowup and global existence in nonlinear Schrödinger equations under a harmonic potential
    • J. ZHANG, Sharp threshold for blowup and global existence in nonlinear Schrödinger equations under a harmonic potential, Comm. Partial Differential Equations, 30, 10-12, (2005), 1429-1443.
    • (2005) Comm. Partial Differential Equations , vol.30 , Issue.10-12 , pp. 1429-1443
    • ZHANG, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.