-
3
-
-
0000817006
-
Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéaires
-
H. Berestycki T. Cazenave Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéaires C. R. Acad. Sci. Paris 293 1981 489 492
-
(1981)
C. R. Acad. Sci. Paris
, vol.293
, pp. 489-492
-
-
Berestycki, H.1
Cazenave, T.2
-
5
-
-
85120268207
-
-
F.A. Berezin M.A. Shubin The Schrödinger Equation Mathematics and its Applications (Soviet Series) vol. 66 1991 Kluwer Academic Publishers Group Dordrecht
-
(1991)
-
-
Berezin, F.A.1
Shubin, M.A.2
-
6
-
-
0007603725
-
Soliton-defect collisions in the nonlinear Schrödinger equation
-
X.D. Cao B.A. Malomed Soliton-defect collisions in the nonlinear Schrödinger equation Phys. Lett. A 206 1995 177 182
-
(1995)
Phys. Lett. A
, vol.206
, pp. 177-182
-
-
Cao, X.D.1
Malomed, B.A.2
-
7
-
-
0141973496
-
An Introduction to Nonlinear Schrödinger Equations
-
T. Cazenave An Introduction to Nonlinear Schrödinger Equations Textos de Métodos Mathematicos vol. 26 1989 IM-UFRJ Rio de Janeiro
-
(1989)
-
-
Cazenave, T.1
-
8
-
-
0000090159
-
Orbital stability of standing waves for some nonlinear Schrödinger equations
-
T. Cazenave P.L. Lions Orbital stability of standing waves for some nonlinear Schrödinger equations Comm. Math. Phys. 85 4 1982 549 561
-
(1982)
Comm. Math. Phys.
, vol.85
, Issue.4
, pp. 549-561
-
-
Cazenave, T.1
Lions, P.L.2
-
11
-
-
0035625303
-
Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential
-
R. Fukuizumi Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential Discrete Contin. Dyn. Syst. 7 3 2001 525 544
-
(2001)
Discrete Contin. Dyn. Syst.
, vol.7
, Issue.3
, pp. 525-544
-
-
Fukuizumi, R.1
-
12
-
-
85120277760
-
-
R. Fukuizumi, L. Jeanjean, Stability of standing waves for a nonlinear Schrödinger equation with a repulsive Dirac delta potential, Discrete Contin. Dyn. Syst. (in press)
-
-
-
-
13
-
-
85120271430
-
-
R. Fukuizumi, M. Ohta, T. Ozawa, Nonlinear Schrödinger equation with a point defect, Ann. Inst. H. Poincaré Anal. Non Linéaire (in press)
-
-
-
-
14
-
-
33748105488
-
Bound states of NLS equations with a periodic nonlinear microstructure
-
G. Fibich Y. Sivan M.I. Weinstein Bound states of NLS equations with a periodic nonlinear microstructure Physica D 217 2006 31 57
-
(2006)
Physica D
, vol.217
, pp. 31-57
-
-
Fibich, G.1
Sivan, Y.2
Weinstein, M.I.3
-
15
-
-
33750901302
-
Waves in nonlinear microstructures — Ultrashort optical pulses and Bose–Einstein condensates
-
Y. Sivan G. Fibich M.I. Weinstein Waves in nonlinear microstructures — Ultrashort optical pulses and Bose–Einstein condensates Phys. Rev. Lett. 97 2006 193902
-
(2006)
Phys. Rev. Lett.
, vol.97
, pp. 193902
-
-
Sivan, Y.1
Fibich, G.2
Weinstein, M.I.3
-
16
-
-
0037437726
-
Stability of solitary waves for nonlinear Schrödinger equations with inhomogeneous nonlinearities
-
G. Fibich X.P. Wang Stability of solitary waves for nonlinear Schrödinger equations with inhomogeneous nonlinearities Physica D 175 2003 96
-
(2003)
Physica D
, vol.175
, pp. 96
-
-
Fibich, G.1
Wang, X.P.2
-
17
-
-
36549088650
-
Orbital stability of periodic waves for the nonlinear Schrödinger equation
-
T. Gallay M. Hărăguş Orbital stability of periodic waves for the nonlinear Schrödinger equation J. Dynam. Differential Equations 19 2007 825 865
-
(2007)
J. Dynam. Differential Equations
, vol.19
, pp. 825-865
-
-
Gallay, T.1
Hărăguş, M.2
-
18
-
-
33846331701
-
Stability of small periodic waves for the nonlinear Schrödinger equation
-
T. Gallay M. Hărăguş Stability of small periodic waves for the nonlinear Schrödinger equation J. Differential Equations 234 2007 544 581
-
(2007)
J. Differential Equations
, vol.234
, pp. 544-581
-
-
Gallay, T.1
Hărăguş, M.2
-
19
-
-
85120276260
-
-
F. Genoud, C.A. Stuart, Schrödinger equations with a spatially decaying nonlinearity: Existence and stability of standing waves, 2007, Preprint
-
-
-
-
20
-
-
49249148441
-
On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case
-
J. Ginibre G. Velo On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case J. Funct. Anal. 32 1 1979 1 32
-
(1979)
J. Funct. Anal.
, vol.32
, Issue.1
, pp. 1-32
-
-
Ginibre, J.1
Velo, G.2
-
21
-
-
0346960813
-
Instability of symmetric stationary states for some nonlinear Schrödinger equations with an external magnetic field
-
J.M. Gonçalves Ribeiro Instability of symmetric stationary states for some nonlinear Schrödinger equations with an external magnetic field Ann. Inst. Henri Poincaré (A) Physique théorique 54 4 1991 403 433
-
(1991)
Ann. Inst. Henri Poincaré (A) Physique théorique
, vol.54
, Issue.4
, pp. 403-433
-
-
Gonçalves Ribeiro, J.M.1
-
23
-
-
0000468151
-
Stability theory of solitary waves in the presence of symmetry. I
-
M. Grillakis J. Shatah W. Strauss Stability theory of solitary waves in the presence of symmetry. I J. Funct. Anal. 74 1 1987 160 197
-
(1987)
J. Funct. Anal.
, vol.74
, Issue.1
, pp. 160-197
-
-
Grillakis, M.1
Shatah, J.2
Strauss, W.3
-
24
-
-
29444432472
-
Stability theory of solitary waves in the presence of symmetry. II
-
M. Grillakis J. Shatah W. Strauss Stability theory of solitary waves in the presence of symmetry. II J. Funct. Anal. 94 2 1990 308 348
-
(1990)
J. Funct. Anal.
, vol.94
, Issue.2
, pp. 308-348
-
-
Grillakis, M.1
Shatah, J.2
Strauss, W.3
-
26
-
-
84867959886
-
Soliton spilitting by external delta potentials
-
J. Holmer J. Marzuola M. Zworski Soliton spilitting by external delta potentials J. Nonlinear Sci. 17 4 2007 349 367
-
(2007)
J. Nonlinear Sci.
, vol.17
, Issue.4
, pp. 349-367
-
-
Holmer, J.1
Marzuola, J.2
Zworski, M.3
-
27
-
-
43049116018
-
Slow soliton interaction with external delta potentials
-
J. Holmer M. Zworski Slow soliton interaction with external delta potentials J. Modern Dynam. 1 2007 689 718
-
(2007)
J. Modern Dynam.
, vol.1
, pp. 689-718
-
-
Holmer, J.1
Zworski, M.2
-
28
-
-
34547930001
-
An existence and stability result for standing waves of nonlinear Schrödinger equations
-
L. Jeanjean S. Le Coz An existence and stability result for standing waves of nonlinear Schrödinger equations Adv. Differential Equations 11 2006 813 840
-
(2006)
Adv. Differential Equations
, vol.11
, pp. 813-840
-
-
Jeanjean, L.1
Le Coz, S.2
-
29
-
-
20144362610
-
A note on a mountain pass characterization of least energy solutions
-
L. Jeanjean K. Tanaka A note on a mountain pass characterization of least energy solutions Adv. Nonlinear Stud. 3 4 2003 445 455
-
(2003)
Adv. Nonlinear Stud.
, vol.3
, Issue.4
, pp. 445-455
-
-
Jeanjean, L.1
Tanaka, K.2
-
30
-
-
0003862232
-
Perturbation theory for linear operators
-
T. Kato Perturbation theory for linear operators second ed. Grundlehren der Mathematischen Wissenschaften Band 132 1976 Springer-Verlag Berlin, New York
-
(1976)
-
-
Kato, T.1
-
31
-
-
85120257817
-
-
V.A. Brazhnyi V.V. Konotop Theory of Nonlinear Matter Waves in Optical Lattices N. Akhmediev Dissipative Solitons vol. 18 2005 p. 627
-
(2005)
-
-
Brazhnyi, V.A.1
Konotop, V.V.2
-
33
-
-
23044524074
-
Blow up and instability of solitary-wave solutions to a generalized Kadomtsev–Petviashvili equation
-
Y. Liu Blow up and instability of solitary-wave solutions to a generalized Kadomtsev–Petviashvili equation Trans. Amer. Math. Soc. 353 1 2001 191 208
-
(2001)
Trans. Amer. Math. Soc.
, vol.353
, Issue.1
, pp. 191-208
-
-
Liu, Y.1
-
34
-
-
0037139617
-
Strong instability of solitary-wave solutions to a Kadomtsev–Petviashvili equation in three dimensions
-
Y. Liu Strong instability of solitary-wave solutions to a Kadomtsev–Petviashvili equation in three dimensions J. Differential Equations 180 1 2002 153 170
-
(2002)
J. Differential Equations
, vol.180
, Issue.1
, pp. 153-170
-
-
Liu, Y.1
-
35
-
-
33646708701
-
Instability of standing waves of the Schrödinger equation with inhomogeneous nonlinearity
-
Y. Liu X.-P. Wang K. Wang Instability of standing waves of the Schrödinger equation with inhomogeneous nonlinearity Trans. Amer. Math. Soc. 358 2006 2105 2122
-
(2006)
Trans. Amer. Math. Soc.
, vol.358
, pp. 2105-2122
-
-
Liu, Y.1
Wang, X.-P.2
Wang, K.3
-
36
-
-
0008046542
-
Modulation instability of a wave scattered by a nonlinear center
-
B.A. Malomed M.Y. Azbel Modulation instability of a wave scattered by a nonlinear center Phys. Rev. B. 47 16 1993 10402 10406
-
(1993)
Phys. Rev. B.
, vol.47
, Issue.16
, pp. 10402-10406
-
-
Malomed, B.A.1
Azbel, M.Y.2
-
37
-
-
15744375622
-
Strong instability of standing waves for nonlinear Klein–Gordon equations
-
M. Ohta G. Todorova Strong instability of standing waves for nonlinear Klein–Gordon equations Discrete Contin. Dyn. Syst. 12 2 2005 315 322
-
(2005)
Discrete Contin. Dyn. Syst.
, vol.12
, Issue.2
, pp. 315-322
-
-
Ohta, M.1
Todorova, G.2
-
38
-
-
85120252395
-
-
M. Reed B. Simon Methods of Modern Mathematical Physics Analysis of Operators vol. IV 1978 Academic Press, Harcourt Brace Jovanovich New York, London
-
(1978)
-
-
Reed, M.1
Simon, B.2
-
39
-
-
2342541513
-
Scattering and trapping of nonlinear Schrödinger solitons in external potentials
-
H. Sakaguchi M. Tamura Scattering and trapping of nonlinear Schrödinger solitons in external potentials J. Phys. Soc. Japan 73 2004 503
-
(2004)
J. Phys. Soc. Japan
, vol.73
, pp. 503
-
-
Sakaguchi, H.1
Tamura, M.2
-
40
-
-
18544376857
-
Nonlinear band structure in Bose–Einstein condensates: Nonlinear Schrödinger equation with a Kronig–Penney potential
-
B.T. Seaman L.D. Carr M.J. Holland Nonlinear band structure in Bose–Einstein condensates: Nonlinear Schrödinger equation with a Kronig–Penney potential Phys. Rev. A 71 2005 033622
-
(2005)
Phys. Rev. A
, vol.71
, pp. 033622
-
-
Seaman, B.T.1
Carr, L.D.2
Holland, M.J.3
-
41
-
-
18444413246
-
Effect of a potential step or impurity on the Bose–Einstein condensate mean field
-
B.T. Seaman L.D. Carr M.J. Holland Effect of a potential step or impurity on the Bose–Einstein condensate mean field Phys. Rev. A 71 2005 033609
-
(2005)
Phys. Rev. A
, vol.71
, pp. 033609
-
-
Seaman, B.T.1
Carr, L.D.2
Holland, M.J.3
-
42
-
-
17444400499
-
Spatial photonics in nonlinear waveguide arrays
-
J. Fleischer G. Bartal O. Cohen T. Schwartz O. Manela B. Freedman M. Segev H. Buljan N.K. Efremidis Spatial photonics in nonlinear waveguide arrays Opt. Express 13 2005 1780
-
(2005)
Opt. Express
, vol.13
, pp. 1780
-
-
Fleischer, J.1
Bartal, G.2
Cohen, O.3
Schwartz, T.4
Manela, O.5
Freedman, B.6
Segev, M.7
Buljan, H.8
Efremidis, N.K.9
-
43
-
-
85120247831
-
-
Y. Sivan, G. Fibich, N.K. Efremidis, S. Bar-Ad, Analytic theory of narrow lattice solitons, Nonlinearity (submitted for publication)
-
-
-
-
44
-
-
85120250342
-
-
C. Sulem P.L. Sulem The Nonlinear Schrödinger Equation, Self-focusing and Wave Collapse Applied Mathematical Sciences vol. 139 1999 Springer-Verlag New-York
-
(1999)
-
-
Sulem, C.1
Sulem, P.L.2
-
45
-
-
0041473959
-
Nonlinear Schrödinger equations and sharp interpolation estimates
-
M.I. Weinstein Nonlinear Schrödinger equations and sharp interpolation estimates Comm. Math. Phys. 87 4 1983 567 576
-
(1983)
Comm. Math. Phys.
, vol.87
, Issue.4
, pp. 567-576
-
-
Weinstein, M.I.1
-
46
-
-
0000686130
-
Modulational stability of ground states of nonlinear Schrödinger equations
-
M.I. Weinstein Modulational stability of ground states of nonlinear Schrödinger equations SIAM J. Math. Anal. 16 1985 472 491
-
(1985)
SIAM J. Math. Anal.
, vol.16
, pp. 472-491
-
-
Weinstein, M.I.1
-
47
-
-
27944469641
-
Sharp threshold for blowup and global existence in nonlinear Schrödinger equations under a harmonic potential
-
J. Zhang Sharp threshold for blowup and global existence in nonlinear Schrödinger equations under a harmonic potential Comm. Partial Differential Equations 30 10–12 2005 1429 1443
-
(2005)
Comm. Partial Differential Equations
, vol.30
, Issue.10–12
, pp. 1429-1443
-
-
Zhang, J.1
|