-
1
-
-
84950771789
-
Estimating optimal transformations for multiple regression and correlation (with discussion)
-
BREIMAN, L. and FRIEDMAN, J. H. (1985). Estimating optimal transformations for multiple regression and correlation (with discussion). J. Amer. Statist. Assoc. 80 580-619.
-
(1985)
J. Amer. Statist. Assoc
, vol.80
, pp. 580-619
-
-
BREIMAN, L.1
FRIEDMAN, J.H.2
-
2
-
-
49449117365
-
-
Shanghai Science and Technology Press, Shanghai, In Chinese
-
CHEN, X., FANG, Z., LI, G. Y. and TAO, B. (1989). Nonparametric Statistics. Shanghai Science and Technology Press, Shanghai. (In Chinese.)
-
(1989)
Nonparametric Statistics
-
-
CHEN, X.1
FANG, Z.2
LI, G.Y.3
TAO, B.4
-
3
-
-
21344476749
-
On the interpretation of regression plots
-
COOK, R. D. (1994). On the interpretation of regression plots. J. Amer. Statist. Assoc. 89 177-189.
-
(1994)
J. Amer. Statist. Assoc
, vol.89
, pp. 177-189
-
-
COOK, R.D.1
-
5
-
-
0040753656
-
SAVE: A method for dimension reduction and graphics in regression
-
COOK, R. D. (2000). SAVE: A method for dimension reduction and graphics in regression. Comm. Statist. Theory Methods 29 2109-2121.
-
(2000)
Comm. Statist. Theory Methods
, vol.29
, pp. 2109-2121
-
-
COOK, R.D.1
-
6
-
-
2242425461
-
Identifying regression outliers and mixtures graphically
-
COOK, R. D. and CRITCHLEY, F. (2000). Identifying regression outliers and mixtures graphically. J. Amer. Statist. Assoc. 95 781-794.
-
(2000)
J. Amer. Statist. Assoc
, vol.95
, pp. 781-794
-
-
COOK, R.D.1
CRITCHLEY, F.2
-
7
-
-
0036284461
-
Dimension reduction for conditional mean in regression
-
COOK, R. D. and LI, B. (2002). Dimension reduction for conditional mean in regression. Ann. Statist. 30 455-474.
-
(2002)
Ann. Statist
, vol.30
, pp. 455-474
-
-
COOK, R.D.1
LI, B.2
-
8
-
-
20444454672
-
Sufficient dimension reduction via inverse regression: A minimum discrepancy approach
-
COOK, R. D. and NI, L. (2005). Sufficient dimension reduction via inverse regression: A minimum discrepancy approach. J. Amer. Statist. Assoc. 100 410-428.
-
(2005)
J. Amer. Statist. Assoc
, vol.100
, pp. 410-428
-
-
COOK, R.D.1
NI, L.2
-
9
-
-
84881499895
-
Discussion of "Sliced inverse regression for dimension reduction," by K.-C. Li
-
COOK, R. D. and WEISBERG, S. (1991). Discussion of "Sliced inverse regression for dimension reduction," by K.-C. Li. J. Amer. Statist. Assoc. 86 328-332.
-
(1991)
J. Amer. Statist. Assoc
, vol.86
, pp. 328-332
-
-
COOK, R.D.1
WEISBERG, S.2
-
13
-
-
0006973110
-
Simultaneous equations and canonical correlation theory
-
HOOPER, J. (1959). Simultaneous equations and canonical correlation theory. Econometrica 27 245-256.
-
(1959)
Econometrica
, vol.27
, pp. 245-256
-
-
HOOPER, J.1
-
14
-
-
0000906634
-
An asymptotic theory for sliced inverse regression
-
HSING, T. and CARROLL, R. J. (1992). An asymptotic theory for sliced inverse regression. Ann. Statist. 20 1040-1061.
-
(1992)
Ann. Statist
, vol.20
, pp. 1040-1061
-
-
HSING, T.1
CARROLL, R.J.2
-
16
-
-
84945116550
-
Sliced inverse regression for dimension reduction (with discussion)
-
LI, K.-C. (1991). Sliced inverse regression for dimension reduction (with discussion). J. Amer. Statist. Assoc. 86 316-342.
-
(1991)
J. Amer. Statist. Assoc
, vol.86
, pp. 316-342
-
-
LI, K.-C.1
-
17
-
-
84950441056
-
On principal Hessian directions for data visualization and dimension reduction: Another application of Stein's lemma
-
LI, K.-C. (1992). On principal Hessian directions for data visualization and dimension reduction: Another application of Stein's lemma. J. Amer. Statist. Assoc. 87 1025-1039.
-
(1992)
J. Amer. Statist. Assoc
, vol.87
, pp. 1025-1039
-
-
LI, K.-C.1
-
21
-
-
0032271144
-
Model checks for regression: An innovation process approach
-
STUTE, W., THIES, S. and ZHU, L.-X. (1998). Model checks for regression: An innovation process approach. Ann. Statist. 26 1916-1934.
-
(1998)
Ann. Statist
, vol.26
, pp. 1916-1934
-
-
STUTE, W.1
THIES, S.2
ZHU, L.-X.3
-
22
-
-
23744440060
-
Nonparametric checks for single-index models
-
STUTE, W. and ZHU, L.-X. (2005). Nonparametric checks for single-index models. Ann. Statist. 33 1048-1083.
-
(2005)
Ann. Statist
, vol.33
, pp. 1048-1083
-
-
STUTE, W.1
ZHU, L.-X.2
-
23
-
-
0036428498
-
An adaptive estimation of dimension reduction space
-
XIA, Y., TONG, H., LI, W. K. and ZHU, L.-X. (2002). An adaptive estimation of dimension reduction space. J. R. Stat. Soc. Ser. B Stat. Methodol. 64 363-410.
-
(2002)
J. R. Stat. Soc. Ser. B Stat. Methodol
, vol.64
, pp. 363-410
-
-
XIA, Y.1
TONG, H.2
LI, W.K.3
ZHU, L.-X.4
-
24
-
-
1142265318
-
Using the bootstrap to select one of a new class of dimension-reduction methods
-
YE, Z. and WEISS, R. E. (2003). Using the bootstrap to select one of a new class of dimension-reduction methods. J. Amer. Statist. Assoc. 98 968-979.
-
(2003)
J. Amer. Statist. Assoc
, vol.98
, pp. 968-979
-
-
YE, Z.1
WEISS, R.E.2
-
25
-
-
0038153750
-
Asymptotics for kernel estimate of sliced inverse regression
-
ZHU, L.-X. and FANG, K.-T. (1996). Asymptotics for kernel estimate of sliced inverse regression. Ann. Statist. 24 1053-1068.
-
(1996)
Ann. Statist
, vol.24
, pp. 1053-1068
-
-
ZHU, L.-X.1
FANG, K.-T.2
-
26
-
-
33745658690
-
On sliced inverse regression with high-dimensional covariates
-
ZHU, L.-X., MIAO, B. and PENG, H. (2006). On sliced inverse regression with high-dimensional covariates. J. Amer. Statist. Assoc. 101 630-643.
-
(2006)
J. Amer. Statist. Assoc
, vol.101
, pp. 630-643
-
-
ZHU, L.-X.1
MIAO, B.2
PENG, H.3
-
27
-
-
0001601159
-
Asymptotics of sliced inverse regression
-
ZHU, L.-X. and NG, K. W. (1995). Asymptotics of sliced inverse regression. Statist. Sinica 5 727-736.
-
(1995)
Statist. Sinica
, vol.5
, pp. 727-736
-
-
ZHU, L.-X.1
NG, K.W.2
-
28
-
-
33751014301
-
On hybrid methods of inverse regression-based algorithms
-
ZHU, L.-X., OHTAKI, M. and LI, Y. X. (2007). On hybrid methods of inverse regression-based algorithms. Comput. Statist. Data Anal. 51 2621-2635.
-
(2007)
Comput. Statist. Data Anal
, vol.51
, pp. 2621-2635
-
-
ZHU, L.-X.1
OHTAKI, M.2
LI, Y.X.3
|