-
2
-
-
0030586523
-
The approximation of fixed points of compositions of nonexpansive mappings in Hilbert space
-
Bauschke H.H. The approximation of fixed points of compositions of nonexpansive mappings in Hilbert space. J. Math. Anal. Appl. 202 1 (1996) 150-159
-
(1996)
J. Math. Anal. Appl.
, vol.202
, Issue.1
, pp. 150-159
-
-
Bauschke, H.H.1
-
3
-
-
0030246542
-
On projection algorithms for solving convex feasibility problems
-
Bauschke H.H., and Borwein J.M. On projection algorithms for solving convex feasibility problems. SIAM Rev. 38 3 (1996) 367-426
-
(1996)
SIAM Rev.
, vol.38
, Issue.3
, pp. 367-426
-
-
Bauschke, H.H.1
Borwein, J.M.2
-
4
-
-
49449097219
-
-
H.H. Bauschke, J.M. Borwein, A.S. Lewis, The method of cyclic projections for closed convex sets in Hilbert space, in: Y. Censor, S. Reich (Eds.), Recent Developments in Optimization Theory and Nonlinear Analysis, vol. 204, Contemporary Mathematics, 1997, pp. 1-38.
-
H.H. Bauschke, J.M. Borwein, A.S. Lewis, The method of cyclic projections for closed convex sets in Hilbert space, in: Y. Censor, S. Reich (Eds.), Recent Developments in Optimization Theory and Nonlinear Analysis, vol. 204, Contemporary Mathematics, 1997, pp. 1-38.
-
-
-
-
5
-
-
0035351666
-
A weak-to-strong convergence principle for Fejér-monotone methods in Hilbert spaces
-
Bauschke H.H., and Combettes P.L. A weak-to-strong convergence principle for Fejér-monotone methods in Hilbert spaces. Math. Oper. Res. 26 2 (2001) 248-264
-
(2001)
Math. Oper. Res.
, vol.26
, Issue.2
, pp. 248-264
-
-
Bauschke, H.H.1
Combettes, P.L.2
-
6
-
-
0003636164
-
-
Prentice-Hall Inc., Upper Saddle River, NJ, USA
-
Bertsekas D.P., and Tsitsiklis J.N. Parallel and Distributed Computation: Numerical Methods (1989), Prentice-Hall Inc., Upper Saddle River, NJ, USA
-
(1989)
Parallel and Distributed Computation: Numerical Methods
-
-
Bertsekas, D.P.1
Tsitsiklis, J.N.2
-
7
-
-
0026046761
-
Some aspects of the parallel and distributed iterative algorithms-a survey
-
Bertsekas D.P., and Tsitsiklis J.N. Some aspects of the parallel and distributed iterative algorithms-a survey. Automatica 27 1 (1991) 3-21
-
(1991)
Automatica
, vol.27
, Issue.1
, pp. 3-21
-
-
Bertsekas, D.P.1
Tsitsiklis, J.N.2
-
8
-
-
0027541192
-
The foundation of set theoretic estimation
-
Combettes P.L. The foundation of set theoretic estimation. Proceeding of the IEEE vol. 81 (1993)
-
(1993)
Proceeding of the IEEE
, vol.81
-
-
Combettes, P.L.1
-
9
-
-
0038538416
-
A block-iterative surrogate constraint splitting method for quadratic signal recovery
-
Combettes P.L. A block-iterative surrogate constraint splitting method for quadratic signal recovery. IEEE Trans. Signal Process. 51 7 (2003) 1771-1782
-
(2003)
IEEE Trans. Signal Process.
, vol.51
, Issue.7
, pp. 1771-1782
-
-
Combettes, P.L.1
-
11
-
-
0031999680
-
Minimizing certain convex functions over the intersection of the fixed point sets of nonexpansive mappings
-
Deutsch F., and Yamada I. Minimizing certain convex functions over the intersection of the fixed point sets of nonexpansive mappings. J. Numer. Funct. Anal. Optim. 19 1-2 (1998) 33-56
-
(1998)
J. Numer. Funct. Anal. Optim.
, vol.19
, Issue.1-2
, pp. 33-56
-
-
Deutsch, F.1
Yamada, I.2
-
12
-
-
49449086842
-
-
I. Ekeland, R. Témam, Convex Analysis and Variational Problems, Classics in Applied Mathematics, vol. 28, SIAM, Philadelphia, PA, USA, 1999.
-
I. Ekeland, R. Témam, Convex Analysis and Variational Problems, Classics in Applied Mathematics, vol. 28, SIAM, Philadelphia, PA, USA, 1999.
-
-
-
-
14
-
-
33749525830
-
Iterative selection methods for common fixed point problems
-
Hirstoaga S.A. Iterative selection methods for common fixed point problems. J. Math. Anal. Appl. 324 2 (2006) 1020-1035
-
(2006)
J. Math. Anal. Appl.
, vol.324
, Issue.2
, pp. 1020-1035
-
-
Hirstoaga, S.A.1
-
16
-
-
0033634301
-
Viscosity approximation methods for fixed-points problems
-
Moudafi A. Viscosity approximation methods for fixed-points problems. J. Math. Anal. Appl. 241 (2000) 46-55
-
(2000)
J. Math. Anal. Appl.
, vol.241
, pp. 46-55
-
-
Moudafi, A.1
-
17
-
-
84968481460
-
Weak convergence of the sequence of successive approximations for nonexpansive mappings
-
Opial Z. Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Amer. Math. Soc. 73 (1967) 591-597
-
(1967)
Bull. Amer. Math. Soc.
, vol.73
, pp. 591-597
-
-
Opial, Z.1
-
18
-
-
0022013294
-
Asymmetric variational inequality problems over product sets: applications and iterative methods
-
Pang J.S. Asymmetric variational inequality problems over product sets: applications and iterative methods. Math. Program. 31 2 (1985) 206-219
-
(1985)
Math. Program.
, vol.31
, Issue.2
, pp. 206-219
-
-
Pang, J.S.1
-
21
-
-
33748562196
-
An efficient distributed power control for infeasible downlink scenarios-global-local fixed-point-approximation technique
-
Takahashi N., Yukawa M., and Yamada I. An efficient distributed power control for infeasible downlink scenarios-global-local fixed-point-approximation technique. IEICE Trans. Fund. 89A 8 (2006) 2107-2118
-
(2006)
IEICE Trans. Fund.
, vol.89 A
, Issue.8
, pp. 2107-2118
-
-
Takahashi, N.1
Yukawa, M.2
Yamada, I.3
-
22
-
-
0037269525
-
An iterative approach to quadratic optimization
-
Xu H.K. An iterative approach to quadratic optimization. J. Optim. Theory Appl. 116 3 (2003) 659-678
-
(2003)
J. Optim. Theory Appl.
, vol.116
, Issue.3
, pp. 659-678
-
-
Xu, H.K.1
-
23
-
-
0344512422
-
Convergence of hybrid steepest-descent methods for variational inequalities
-
Xu H.K., and Kim T.H. Convergence of hybrid steepest-descent methods for variational inequalities. J. Optim. Theory Appl. 119 1 (2003) 185-201
-
(2003)
J. Optim. Theory Appl.
, vol.119
, Issue.1
, pp. 185-201
-
-
Xu, H.K.1
Kim, T.H.2
-
24
-
-
77956693893
-
The hybrid steepest descent method for the variational inequality problem over the intersection of fixed point sets of nonexpansive mappings
-
Butnariu D., Censor Y., and Reich S. (Eds), North-Holland, Amsterdam, Holland
-
Yamada I. The hybrid steepest descent method for the variational inequality problem over the intersection of fixed point sets of nonexpansive mappings. In: Butnariu D., Censor Y., and Reich S. (Eds). Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications (2001), North-Holland, Amsterdam, Holland 473-504
-
(2001)
Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications
, pp. 473-504
-
-
Yamada, I.1
-
25
-
-
11144241645
-
Hybrid steepest descent method for variational inequality problem over the fixed point set of certain quasi-nonexpansive mappings
-
Yamada I., and Ogura N. Hybrid steepest descent method for variational inequality problem over the fixed point set of certain quasi-nonexpansive mappings. J. Numer. Funct. Anal. Optim. 25 7 & 8 (2004) 619-655
-
(2004)
J. Numer. Funct. Anal. Optim.
, vol.25
, Issue.7-8
, pp. 619-655
-
-
Yamada, I.1
Ogura, N.2
-
26
-
-
0012580117
-
A numerically robust hybrid steepest descent method for the convexly constrained generalized inverse problems
-
Yamada I., Ogura N., and Shirakawa N. A numerically robust hybrid steepest descent method for the convexly constrained generalized inverse problems. Contemp. Math. 313 (2002) 269-305
-
(2002)
Contemp. Math.
, vol.313
, pp. 269-305
-
-
Yamada, I.1
Ogura, N.2
Shirakawa, N.3
-
27
-
-
49449087725
-
-
I. Yamada, N. Ogura, Y. Yamashita, K. Sakaniwa, An extension of optimal fixed point theorem for nonexpansive operator and its application to set theoretic signal estimation, Technical Report of IEICE DSP96-106, 1996, pp. 63-70.
-
I. Yamada, N. Ogura, Y. Yamashita, K. Sakaniwa, An extension of optimal fixed point theorem for nonexpansive operator and its application to set theoretic signal estimation, Technical Report of IEICE DSP96-106, 1996, pp. 63-70.
-
-
-
|