-
1
-
-
0039279366
-
Quelques propriétés des opérateurs angle-bornés et n-cycliquement monotones
-
Baillon, J.-B., Haddad, G. (1977). Quelques propriétés des opérateurs angle-bornés et n-cycliquement monotones. Israel J. Math. 26:137-150.
-
(1977)
Israel J. Math.
, vol.26
, pp. 137-150
-
-
Baillon, J.-B.1
Haddad, G.2
-
2
-
-
0002057574
-
On the asymptotic behavior of nonexpansive mappings and semigroups in Banach spaces
-
Baillon, J.-B., Bruck, R. E., Reich, S. (1978). On the asymptotic behavior of nonexpansive mappings and semigroups in Banach spaces. Houston J. Math. 4:1-9.
-
(1978)
Houston J. Math.
, vol.4
, pp. 1-9
-
-
Baillon, J.-B.1
Bruck, R.E.2
Reich, S.3
-
4
-
-
0030586523
-
The approximation of fixed points of compositions of nonexpansive mappings in Hilbert space
-
Bauschke, H. H. (1996). The approximation of fixed points of compositions of nonexpansive mappings in Hilbert space. J. Math. Anal. Appl. 202:150-159.
-
(1996)
J. Math. Anal. Appl.
, vol.202
, pp. 150-159
-
-
Bauschke, H.H.1
-
5
-
-
0030246542
-
On projection algorithms for solving convex feasibility problems
-
Bauschke, H. H., Borwein, J. M. (1996). On projection algorithms for solving convex feasibility problems. SIAM Review 38:367-426.
-
(1996)
SIAM Review
, vol.38
, pp. 367-426
-
-
Bauschke, H.H.1
Borwein, J.M.2
-
6
-
-
0035351666
-
A weak-to-strong convergence principle for Fejér-monotone methods in Hilbert space
-
Bauschke, H. H., Combettes, P. L. (2001). A weak-to-strong convergence principle for Fejér-monotone methods in Hilbert space. Math. Oper. Res. 26:248-264.
-
(2001)
Math. Oper. Res.
, vol.26
, pp. 248-264
-
-
Bauschke, H.H.1
Combettes, P.L.2
-
7
-
-
0002351732
-
The method of cyclic projections for closed convex sets in Hilbert space
-
Bauschke, H. H., Borwein, J. M., Lewis, A. S. (1997). The method of cyclic projections for closed convex sets in Hilbert space. Contemp. Math. 204:1-38.
-
(1997)
Contemp. Math.
, vol.204
, pp. 1-38
-
-
Bauschke, H.H.1
Borwein, J.M.2
Lewis, A.S.3
-
9
-
-
0002395296
-
Examples of convex functions and classifications of normed spaces
-
Borwein, J. M., Fitzpatrick S., Vanderwerff, J. (1994). Examples of convex functions and classifications of normed spaces. J. Convex Anal. 1:61-73.
-
(1994)
J. Convex Anal.
, vol.1
, pp. 61-73
-
-
Borwein, J.M.1
Fitzpatrick, S.2
Vanderwerff, J.3
-
10
-
-
0000256894
-
Nonexpansive projections and resolvents of accretive operators in Banach spaces
-
Bruck, R. E., Reich, S. (1977). Nonexpansive projections and resolvents of accretive operators in Banach spaces. Houston J. Math. 3:459-470.
-
(1977)
Houston J. Math.
, vol.3
, pp. 459-470
-
-
Bruck, R.E.1
Reich, S.2
-
11
-
-
1342265919
-
A unified treatment of some iterative algorithms in signal processing and image reconstruction
-
Byrne, C. L. (2004). A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Problems 20:103-120.
-
(2004)
Inverse Problems
, vol.20
, pp. 103-120
-
-
Byrne, C.L.1
-
12
-
-
0000683866
-
An interior point method with Bregman functions for the variational inequality problem with paramonotone operators
-
Censor, Y., Iusem, A. N., Zenios, S. A. (1998). An interior point method with Bregman functions for the variational inequality problem with paramonotone operators. Math. Programming 81:373-400.
-
(1998)
Math. Programming
, vol.81
, pp. 373-400
-
-
Censor, Y.1
Iusem, A.N.2
Zenios, S.A.3
-
13
-
-
0001488677
-
Construction d'un point fixe commun à une famille de contractions fermes
-
Combettes, P. L. (1995). Construction d'un point fixe commun à une famille de contractions fermes. C.R. Acad. Sci.Paris Sèr. I Math. 320:1385-1390.
-
(1995)
C.R. Acad. Sci.Paris Sèr. I Math.
, vol.320
, pp. 1385-1390
-
-
Combettes, P.L.1
-
14
-
-
0031118954
-
Convex set theoretic image recovery by extrapolated iterations of parallel subgradient projections
-
Combettes, P. L. (1997). Convex set theoretic image recovery by extrapolated iterations of parallel subgradient projections. IEEE Trans. Image Process. 6(4):493-506.
-
(1997)
IEEE Trans. Image Process
, vol.6
, Issue.4
, pp. 493-506
-
-
Combettes, P.L.1
-
15
-
-
0038538416
-
A block-iterative surrogate constraint splitting method for quadratic signal recovery
-
Combettes, P. L. (2003). A block-iterative surrogate constraint splitting method for quadratic signal recovery. IEEE Trans. Signal Process. 51(7):1771-1782.
-
(2003)
IEEE Trans. Signal Process
, vol.51
, Issue.7
, pp. 1771-1782
-
-
Combettes, P.L.1
-
16
-
-
4344685262
-
Image restoration subject to a total variation constraint
-
Combettes, P. L., Pesquet, J-C. (2004). Image restoration subject to a total variation constraint. IEEE Trans. Image Process. 13(9):1213-1222.
-
(2004)
IEEE Trans. Image Process
, vol.13
, Issue.9
, pp. 1213-1222
-
-
Combettes, P.L.1
Pesquet, J.-C.2
-
17
-
-
0031999680
-
Minimizing certain convex functions over the intersection of the fixed point sets of nonexpansive mappings
-
Deutsch, F., Yamada, I. (1998). Minimizing certain convex functions over the intersection of the fixed point sets of nonexpansive mappings. Numer, Funct. Anal. Optim. 19:33-56.
-
(1998)
Numer, Funct. Anal. Optim.
, vol.19
, pp. 33-56
-
-
Deutsch, F.1
Yamada, I.2
-
18
-
-
1342265563
-
Solutions of variational inequalities associated with a class of monotone maps
-
Dolidze, Z. O. (1982). Solutions of variational inequalities associated with a class of monotone maps. Ekonomika i Matem. Melody 18:925-927.
-
(1982)
Ekonomika i Matem. Melody
, vol.18
, pp. 925-927
-
-
Dolidze, Z.O.1
-
20
-
-
0016895702
-
Convexity, monotonicity, and gradient processes
-
Dunn, J. C. (1976). Convexity, monotonicity, and gradient processes. J. Math. Anal. Appl. 53:145-158.
-
(1976)
J. Math. Anal. Appl.
, vol.53
, pp. 145-158
-
-
Dunn, J.C.1
-
21
-
-
84880683689
-
Iteration methods for convexly constrained ill-posed problems in Hubert space
-
Eicke, B. (1992). Iteration methods for convexly constrained ill-posed problems in Hubert space. Numer. Funct. Anal. Optim. 13:413-429.
-
(1992)
Numer. Funct. Anal. Optim.
, vol.13
, pp. 413-429
-
-
Eicke, B.1
-
25
-
-
84966240089
-
Convex programming in Hubert space
-
Goldstein, A. A. (1964). Convex programming in Hubert space. Bull. Am. Math. Soc. 70:709-710.
-
(1964)
Bull. Am. Math. Soc.
, vol.70
, pp. 709-710
-
-
Goldstein, A.A.1
-
28
-
-
84894234564
-
Fixed points of nonexpanding maps
-
Halpern, B. (1967). Fixed points of nonexpanding maps. Bull. Am. Math. Soc. 73:957-961.
-
(1967)
Bull. Am. Math. Soc.
, vol.73
, pp. 957-961
-
-
Halpern, B.1
-
31
-
-
0345295872
-
Block-iterative surrogate projection methods for convex feasibility problems
-
Kiwiel, K. C. (1995). Block-iterative surrogate projection methods for convex feasibility problems. Linear Algebra Appl. 215:225-259.
-
(1995)
Linear Algebra Appl.
, vol.215
, pp. 225-259
-
-
Kiwiel, K.C.1
-
33
-
-
0000736340
-
Approximation de points fixes de contractions
-
Lions, P. L. (1977). Approximation de points fixes de contractions. C. R. Acad. Sci. Paris Sèrie A-B 284:1357-1359.
-
(1977)
C. R. Acad. Sci. Paris Sèrie A-B
, vol.284
, pp. 1357-1359
-
-
Lions, P.L.1
-
34
-
-
0042440415
-
Regularization of nonlinear ill-posed variational inequalities and convergence rates
-
Liu, F., Nashed, M. Z. (1998). Regularization of nonlinear ill-posed variational inequalities and convergence rates. Set-Valued Anal. 6:313-344.
-
(1998)
Set-Valued Anal.
, vol.6
, pp. 313-344
-
-
Liu, F.1
Nashed, M.Z.2
-
36
-
-
0036477752
-
Non-strictly convex minimization over the fixed point set of the asymptotically shrinking nonexpansive mapping
-
Ogura, N., Yamada, I. (2002). Non-strictly convex minimization over the fixed point set of the asymptotically shrinking nonexpansive mapping. Numer. Fund. Anal. Optim. 23:113-137.
-
(2002)
Numer. Fund. Anal. Optim.
, vol.23
, pp. 113-137
-
-
Ogura, N.1
Yamada, I.2
-
37
-
-
0037930573
-
Non-strictly convex minimization over the bounded fixed point set of nonexpansive mapping
-
Ogura, N., Yamada, I. (2003). Non-strictly convex minimization over the bounded fixed point set of nonexpansive mapping. Numer. Fund. Anal. Optim. 24:129-135.
-
(2003)
Numer. Fund. Anal. Optim.
, vol.24
, pp. 129-135
-
-
Ogura, N.1
Yamada, I.2
-
38
-
-
2342459111
-
Convex feasibility problem with prioritized hard constraints-Double layered projected gradient method
-
Ogura, N., Yamada, I. (2004a). Convex feasibility problem with prioritized hard constraints-Double layered projected gradient method. IEICE Trans. Fundamentals E87-A(4):872-878.
-
(2004)
IEICE Trans. Fundamentals
, vol.E87-A
, Issue.4
, pp. 872-878
-
-
Ogura, N.1
Yamada, I.2
-
40
-
-
84968481460
-
Weak convergence of the sequence of successive approximations for nonexpansive mapping
-
Opial, Z. (1967). Weak convergence of the sequence of successive approximations for nonexpansive mapping. Bull. Am. Math. Soc. 73:591-597.
-
(1967)
Bull. Am. Math. Soc.
, vol.73
, pp. 591-597
-
-
Opial, Z.1
-
41
-
-
0001000182
-
Some problems and results in fixed point theory
-
Reich, S. (1983). Some problems and results in fixed point theory. Contemp. Math. 21:179-187.
-
(1983)
Contemp. Math.
, vol.21
, pp. 179-187
-
-
Reich, S.1
-
42
-
-
0032166840
-
Convexly constrained linear inverse problems: Iterative least-squares and regularization
-
Sabharwal, A., Potter, L. C. (1998). Convexly constrained linear inverse problems: Iterative least-squares and regularization. IEEE Trans. Signal Process. 46:2345-2352.
-
(1998)
IEEE Trans. Signal Process.
, vol.46
, pp. 2345-2352
-
-
Sabharwal, A.1
Potter, L.C.2
-
43
-
-
0037401345
-
Computation of symmetric positive definite Toeplitz matrices by the hybrid steepest descent method
-
Slavakis, K., Yamada, I., Sakaniwa, K. (2003). Computation of symmetric positive definite Toeplitz matrices by the hybrid steepest descent method. Signal Process. 83:1135-1140.
-
(2003)
Signal Process
, vol.83
, pp. 1135-1140
-
-
Slavakis, K.1
Yamada, I.2
Sakaniwa, K.3
-
46
-
-
11144241370
-
Ill-posed problems and iterative approximation of fixed points of pseudo-contractive mappings
-
Tikhonov, A., ed. VSP
-
Vasin, V. V. (1992). Ill-posed problems and iterative approximation of fixed points of pseudo-contractive mappings. In: Tikhonov, A., ed. Ill-posed Problems in Natural Sciences. VSP, pp. 214-223.
-
(1992)
Ill-posed Problems in Natural Sciences
, pp. 214-223
-
-
Vasin, V.V.1
-
49
-
-
0001682125
-
Approximation of fixed points of nonexpansive mappings
-
Wittmann, R. (1992). Approximation of fixed points of nonexpansive mappings. Arch. Math. 58:486-491.
-
(1992)
Arch. Math.
, vol.58
, pp. 486-491
-
-
Wittmann, R.1
-
50
-
-
0344512422
-
Convergence of hybrid steepest descent methods for variational inequalities
-
Xu, H. K., Kim, T. H. (2003). Convergence of hybrid steepest descent methods for variational inequalities. J. Optimization Theory Appl. 119(1):185-201.
-
(2003)
J. Optimization Theory Appl.
, vol.119
, Issue.1
, pp. 185-201
-
-
Xu, H.K.1
Kim, T.H.2
-
51
-
-
17544398138
-
Approximation of convexly constrained pseudoinverse by hybrid steepest descent method
-
Florida, May
-
Yamada, I. (1999). Approximation of convexly constrained pseudoinverse by hybrid steepest descent method. In: Proceedings of the IEEE ISCAS'99. Florida, May.
-
(1999)
Proceedings of the IEEE ISCAS'99
-
-
Yamada, I.1
-
52
-
-
0000035888
-
Convex projection algorithm from POCS to hybrid steepest descent method
-
in Japanese
-
Yamada, I. (2000). Convex projection algorithm from POCS to hybrid steepest descent method. J. IEICE 83(8):616-623. in Japanese.
-
(2000)
J. IEICE
, vol.83
, Issue.8
, pp. 616-623
-
-
Yamada, I.1
-
53
-
-
77956693893
-
The hybrid steepest descent method for the variational inequality problem over the intersection of fixed point sets of nonexpansive mappings
-
Butnariu, D., Censor, Y., Reich, S., eds. Elsevier
-
Yamada, I. (2001). The hybrid steepest descent method for the variational inequality problem over the intersection of fixed point sets of nonexpansive mappings. In: Butnariu, D., Censor, Y., Reich, S., eds. Inherently Parallel Algorithm for Feasibility and Optimization and Their Applications. Elsevier, pp. 473-504.
-
(2001)
Inherently Parallel Algorithm for Feasibility and Optimization and Their Applications
, pp. 473-504
-
-
Yamada, I.1
-
54
-
-
4243078179
-
Adaptive projected subgradient method: A unified view for projection based adaptive algorithms
-
In Japanese
-
Yamada, I. (2003). Adaptive projected subgradient method: A unified view for projection based adaptive algorithms. J. IEICE 86(8):654-658. In Japanese.
-
(2003)
J. IEICE
, vol.86
, Issue.8
, pp. 654-658
-
-
Yamada, I.1
-
57
-
-
11144229787
-
-
Kyoto University: Research Institute of Mathematical Sciences, December 2003 (Published in "Kokyuroku" 1362, April, 2004)
-
Yamada, I., Ogura, N. (2004a). Two Generalizations of the Projected Gradient Method for Convexly Constrained Inverse Problems-Hybrid Steepest Descent Method, Adaptive Projected Subgradient Method, Numerical Analysis and New Information Technology'03 (NANIT'03). Kyoto University: Research Institute of Mathematical Sciences, December 2003 (Published in "Kokyuroku" 1362, pp. 88-94, April, 2004).
-
(2004)
Two Generalizations of the Projected Gradient Method for Convexly Constrained Inverse Problems-hybrid Steepest Descent Method, Adaptive Projected Subgradient Method, Numerical Analysis and New Information Technology'03 (NANIT'03)
, pp. 88-94
-
-
Yamada, I.1
Ogura, N.2
-
58
-
-
84865811070
-
Hybrid steepest descent method for the variational inequality problem over the fixed point sets of certain quasi-nonexpansive mappings
-
Wellington, February
-
Yamada, I., Ogura, N. (2004b). Hybrid steepest descent method for the variational inequality problem over the fixed point sets of certain quasi-nonexpansive mappings. In: Victoria International Conference 2004, Wellington, February.
-
(2004)
Victoria International Conference 2004
-
-
Yamada, I.1
Ogura, N.2
-
59
-
-
11144235357
-
Adaptive projected subgradient method for asymptotic minimization of sequence of nonnegative convex functions
-
Yamada, I., Ogura, N. (2004c). Adaptive projected subgradient method for asymptotic minimization of sequence of nonnegative convex functions. Numer. Funct. Anal. Optim. 25(7-8):593-617.
-
(2004)
Numer. Funct. Anal. Optim.
, vol.25
, Issue.7-8
, pp. 593-617
-
-
Yamada, I.1
Ogura, N.2
-
60
-
-
11144238648
-
An extension of optimal fixed point theorem for nonexpansive operator and its application to set theoretic signal estimation
-
Yamada, I., Ogura, N., Yamashita, Y., Sakaniwa, K. (1996). An extension of optimal fixed point theorem for nonexpansive operator and its application to set theoretic signal estimation. Tech. Rep. IEICE DSP96-106:63-70.
-
(1996)
Tech. Rep. IEICE
, vol.DSP96-106
, pp. 63-70
-
-
Yamada, I.1
Ogura, N.2
Yamashita, Y.3
Sakaniwa, K.4
-
61
-
-
0032002260
-
Quadratic optimization of fixed points of nonexpansive mappings in Hubert space
-
Yamada, I., Ogura, N., Yamashita, Y., Sakaniwa, K. (1998). Quadratic optimization of fixed points of nonexpansive mappings in Hubert space. Numer. Funct. Anal. Optim. 19:165-190.
-
(1998)
Numer. Funct. Anal. Optim.
, vol.19
, pp. 165-190
-
-
Yamada, I.1
Ogura, N.2
Yamashita, Y.3
Sakaniwa, K.4
-
62
-
-
0036571426
-
An efficient robust adaptive filtering algorithm based on parallel subgradient projection techniques
-
Yamada, I., Slavakis, K., Yamada, K. (2002a). An efficient robust adaptive filtering algorithm based on parallel subgradient projection techniques. IEEE Trans. Signal Process. 50(5):1091-1101.
-
(2002)
IEEE Trans. Signal Process
, vol.50
, Issue.5
, pp. 1091-1101
-
-
Yamada, I.1
Slavakis, K.2
Yamada, K.3
-
63
-
-
0012580117
-
A numerically robust hybrid steepest descent method for the convexly constrained generalized inverse problems
-
Nashed, Z., Scherzer, O., eds. Contemporary Mathematics
-
Yamada, I., Ogura, N., Shirakawa, N. (2002b). A numerically robust hybrid steepest descent method for the convexly constrained generalized inverse problems. In: Nashed, Z., Scherzer, O., eds. Inverse Problems, Image Analysis, and Medical Imaging. Contemporary Mathematics. 313:269-305.
-
(2002)
Inverse Problems, Image Analysis, and Medical Imaging
, vol.313
, pp. 269-305
-
-
Yamada, I.1
Ogura, N.2
Shirakawa, N.3
-
65
-
-
0018008609
-
Generalized image restoration by the method of alternating orthogonal projections
-
Youla, D. C. (1978). Generalized image restoration by the method of alternating orthogonal projections. IEEE Trans. Circuits Syst. 25:694-702.
-
(1978)
IEEE Trans. Circuits Syst.
, vol.25
, pp. 694-702
-
-
Youla, D.C.1
-
66
-
-
0020191832
-
Image restoration by the method of convex projections: Part 1- Theory
-
Youla, D. C., Webb, H. (1982). Image restoration by the method of convex projections: Part 1- Theory. IEEE Trans. Med. Imaging 1:81-94.
-
(1982)
IEEE Trans. Med. Imaging
, vol.1
, pp. 81-94
-
-
Youla, D.C.1
Webb, H.2
|